×

Entrance region flow in concentric annuli with rotating inner wall for Herschel-Bulkley fluids. (English) Zbl 1320.76091

Summary: A finite difference analysis of the entrance region flow of Herschel-Bulkley fluids in concentric annuli with rotating inner wall has been carried out. The analysis is made for simultaneously developing hydrodynamic boundary layer in concentric annuli with the inner cylinder assumed to be rotating with a constant angular velocity and the outer cylinder being stationary. A finite difference analysis is used to obtain the velocity distributions and pressure variations along the radial direction. With the Prandtl boundary layer assumptions, the continuity and momentum equations are solved iteratively using a finite difference method. Computational results are obtained for various non-Newtonian flow parameters and geometrical considerations. A significant asymmetry is found in the entrance region which is gradually reduced as the flow develops. For smaller values of aspect ratio and higher values of Herschel-Bulkley number the flow is found to stabilize more gradually. Comparison of the present results with the results available in literature for various particular cases has been done and found to be in agreement.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76A05 Non-Newtonian fluids
65N06 Finite difference methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Mishra, I.M., Kumar, Surendra: Entrance region flow of bingham plastic fluids in concentric annulus. Indian J. Technol. 23, 81-87 (1985) · Zbl 0586.76006
[2] Batra, R.L., Das, Bigyani: Flow of a casson fluid between two rotating cylinders. Fluid Dyn. Res. 9, 133-141 (1992) · doi:10.1016/0169-5983(92)90063-3
[3] Maia, M.C.A., Gasparetto, C.A.: A numerical solution for entrance region of non-Newtonian flow in annuli. Braz. J. Chem. Eng. 20, 201-211 (2003) · doi:10.1590/S0104-66322003000200014
[4] Sayed-Ahmed, M.E., Sharaf-El-Din, Hazem: Entrance region flow of a power-law fluid in concentric annuli with rotating inner wall. International Communications in Heat and Mass Transfer 33, 654-665 (2006) · doi:10.1016/j.icheatmasstransfer.2006.01.004
[5] Bird, R.D., Dai, G.C., Yarusso, B.J.: The rheology and flow of viscoplastic materials. Rev. Chem. Eng. 1, 1-70 (1982)
[6] Manglik, R., Fang, P.: Thermal processing of various non-Newtonian fluids in annular ducts. Int. J. Heat Mass Transf. 45, 803-815 (2002) · Zbl 0991.76563 · doi:10.1016/S0017-9310(01)00186-7
[7] Vaina, M.J.G., Nascimento, U.C.S., Quaresma, J.N.N., Macedo, E.N.: Integral transform method for laminar heat transfer convection of Herschel-Bulkley fluids within concentric annular ducts. Braz. J. Chem. Eng. 18, 337-358 (2001)
[8] Round, G.F., Yu, S.: Entrance laminar flows of viscoplastic fluids in concentric annuli. Can. J. Chem. Eng. 71, 642-645 (1993) · doi:10.1002/cjce.5450710417
[9] Soares, E.J., Naccache, M.F., Souza Mendes, P.R.: Heat transfer to Herschel-Bulkley materials in annular flows. Proceedings of the 7th Brazilian congress thermal sciences 2, 1146-1151 (1998)
[10] Hammad, Khaled J., Vradis, George C., Volkan Ottigen, M.: Laminar flow of a Herschel-Bulkley fluid over an axisymmetric sudden expansion. J. Fluids Eng. 123, 588-594 (2001) · doi:10.1115/1.1378023
[11] Nouar, C., Lebouche, M., Devienne, R., Riou, : Numerical analysis of the thermal convection for Herschel-Bulkley fluids. Int. J. Heat Fluid Flow 16, 223-232 (1995) · doi:10.1016/0142-727X(95)00010-N
[12] Hussain, Q.E., Sharif, M.A.R.: Numerical modeling of viscoplastic fluids in eccentric annuli. AIChE Journal 46, 1937-1946 (2001) · doi:10.1002/aic.690461006
[13] Soares, Edson J., Naccache, Mnica F., Souza Mendes, Paulo R.: Heat transfer to viscoplastic materials flowing axially through concentric annuli. Int. J. Heat Fluid Flow 24, 762-773 (2003) · doi:10.1016/S0142-727X(03)00066-3
[14] Kandasamy, A., Karthik, K., Phanidar, P.H.: Entrance region flow of heat transfer in concentric annuli for Herschel-Bulkley fluids. Comput. Fluid Dyn. J. 16, 103-114 (2007)
[15] Poole, R.J., Chhabra, R.P.: Development length requirements for fully developed Laminar pipe flow of yield stress fluids. J. Fluids Eng. 132, 34501-34504 (2010) · doi:10.1115/1.4001079
[16] Pai, Rekha G., Kandasamy, A.: Entrance region flow of Herschel-Bulkley fluid in an annular cylinder. Appl. Math. 5, 1964-1976 (2014) · doi:10.4236/am.2014.513189
[17] Galanis, N., Rashidi, M.M.: Entropy generation in Non-Newtonian fluids due to heat and mass transfer in the entrance region of ducts. Heat Mass Transf. 48, 1647-1662 (2012) · doi:10.1007/s00231-012-1009-7
[18] Rashidi, M.M., Keimanesh, M., Rajvanshi, S.C., Wasu, S.: Pulsatile flow through annular space bounded by outer porous cylinder and an inner cylinder of permeable material. Int. J. Comput. Methods Eng. Sci. Mech. 13(6), 381-391 (2012) · Zbl 07871326 · doi:10.1080/15502287.2012.698708
[19] Rashidi, M.M., Rajvanshi, S.C., Kavyani, N., Keimanesh, M., Pop, I., Saini, B.S.: Investigation of Heat Transfer in a Porous Annulus with Pulsating Pressure Gradient by Homotopy Analysis Method. Arab J Sci Eng 39, 5113-5128 (2014) · Zbl 1390.80007 · doi:10.1007/s13369-014-1140-5
[20] Schlichting, H., Gersten, K.: Boundary layer theory, 8th edn. Springer, Berlin (2000) · Zbl 0940.76003 · doi:10.1007/978-3-642-85829-1
[21] Coney, J.E.R., El-Shaarawi, M.A.I.: A contribution to the numerical solution of developing laminar flow in the entrance region of concentric annuli with rotating inner walls. ASME Trans. J. Fluid Eng. 96, 333-340 (1974) · doi:10.1115/1.3447166
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.