×

Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme. (English) Zbl 1323.35087

The authors study a reaction-diffusion system with Degn-Harrison reaction scheme and with Neumann boundary value condition. The domain here is \(\Omega\subset\mathbb{R}^n\). Assuming that \((u(x),v(x))\) is any positive nonconstant steady state, some basic properties of \((u(x),v(x))\) are given. They then discuss the stability of a constant steady state, both for the ODE and the PDE model. Their result indicates that if either the size of the reactor or the effective diffusion rate is large, then there exists no positive nonconstant steady state. Finally, assuming that \(\Omega=(0,\pi)\), the structure of a positive nonconstant steady state is investigated: the local structure of the steady state bifurcation from double eigenvalues by using the techniques of space decomposition and the implicit theorem, and the global structure of the steady state bifurcation from simple eigenvalues by using the bifurcation theorem.

MSC:

35K57 Reaction-diffusion equations
35B35 Stability in context of PDEs
35B32 Bifurcations in context of PDEs
35B36 Pattern formations in context of PDEs
Full Text: DOI

References:

[1] Balslev, J.; Degn, H., Spatial instability in simple reaction schemes, J. Theoret. Biol., 49, 1, 173-177 (1975)
[2] Casten, R. G.; Holland, C. J., Stability properties of solutions to systems of reaction-diffusion equations, SIAM J. Appl. Math., 33, 2, 353-364 (1977) · Zbl 0372.35044
[3] Crandall, M. G.; Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 2, 321-340 (1971) · Zbl 0219.46015
[4] Degn, H.; Harrison, D. E.F., Theory of oscillations of respiration rate in continuous culture of Klebsiella aerogenes, J. Theoret. Biol., 22, 2, 238-248 (1969)
[5] Fairén, V.; Velarde, M. G., Time-periodic oscillations in a model for the respiratory process of a bacterial culture, J. Math. Biol., 8, 2, 147-157 (1979) · Zbl 0417.92003
[6] Fairén, V.; Velarde, M. G., Dissipative structures in a nonlinear reaction-diffusion model with inhibition forward: global nonuniform steady patterns, spatiotemporal structures and wave-like phenomena, Progr. Theoret. Phys., 61, 3, 801-814 (1979) · Zbl 0449.35057
[7] Fairén, V.; Velarde, M. G., Dissipative structures in a nonlinear reaction-diffusion model with forward inhibition: stability of secondary multiple steady states, Rep. Math. Phys., 16, 3, 421-432 (1979) · Zbl 0449.35057
[8] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H., Theory and Application of Hopf Bifurcation, London Math. Soc. Lecture Note Ser., vol. 41 (1981), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0474.34002
[9] Hemmer, P. C.; Velarde, M. G., Multiple steady states for the Degn-Harrison reaction scheme of a bacterial culture, Z. Phys. B, 31, 1, 111-116 (1978)
[10] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840 (1984), Springer-Verlag: Springer-Verlag Berlin, New York
[11] Ibáñez, J. L.; Fairén, V.; Velarde, M. G., Stability diagram and nonlinear structures in a simple reaction scheme involving inhibition forward, Phys. Lett. A, 59, 5, 335-337 (1976)
[12] Lengyel, I.; Epstein, I. R., Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system, Science, 251, 4994, 650-652 (1991)
[13] Lengyel, I.; Epstein, I. R., A chemical approach to designing Turing patterns in reaction-diffusion systems, Proc. Natl. Acad. Sci. USA, 89, 9, 3977-3979 (1992) · Zbl 0745.92002
[14] Lou, Y.; Martínez, S.; Poláčik, P., Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Differential Equations, 230, 2, 720-742 (2006) · Zbl 1154.35011
[15] Jang, J.; Ni, W. M.; Tang, M. X., Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dynam. Differential Equations, 16, 2, 297-320 (2004) · Zbl 1072.35091
[16] Ni, W. M.; Tang, M. X., Turing patterns in the Lengyel-Epstein system for the CIMA reaction, Trans. Amer. Math. Soc., 357, 10, 3953-3969 (2005) · Zbl 1074.35051
[17] Nishiura, Y., Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13, 4, 555-593 (1982) · Zbl 0501.35010
[18] Peng, R.; Wang, M. X., Note on a ratio-dependent predator-prey system with diffusion, Nonlinear Anal. Real World Appl., 7, 1, 1-11 (2006) · Zbl 1085.92050
[19] Peng, R.; Yi, F. Q.; Zhao, X. Q., Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differential Equations, 254, 6, 2465-2498 (2013) · Zbl 1270.35090
[20] Rabinowitz, P. H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7, 3, 487-513 (1971) · Zbl 0212.16504
[21] Shi, J. P., Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169, 2, 494-531 (1999) · Zbl 0949.47050
[22] Takagi, I., Point-condensation for a reaction-diffusion system, J. Differential Equations, 61, 2, 208-249 (1986) · Zbl 0627.35049
[23] Velarde, M. G., Dissipative structures and oscillations in reaction-diffusion models with or without time-delay, Lecture Notes in Phys., 164, 248-278 (1982)
[24] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (1991), Springer: Springer New York
[25] Yamada, Y., Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions, SIAM J. Math. Anal., 21, 2, 327-345 (1990) · Zbl 0702.35123
[26] Yi, F. Q.; Wei, J. J.; Shi, J. P., Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246, 5, 1944-1977 (2009) · Zbl 1203.35030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.