×

Pathwise versions of the Burkholder-Davis-Gundy inequality. (English) Zbl 1352.60060

Motivated by hedging considerations from mathematical finance, the authors give a new proof of the Burkholder-Davis-Gundy (BDG) inequalities, which give a comparison between the running maximum of a martingale and its quadratic variation.
The inequalities are obtained as a consequence of deterministic inequalities which are then applied pathwise to the given martingale. Taking expectations in these inequalities then yields the BDG inequalities.

MSC:

60G42 Martingales with discrete parameter
60E15 Inequalities; stochastic orderings
60G46 Martingales and classical analysis
91G20 Derivative securities (option pricing, hedging, etc.)

References:

[1] Acciaio, B., Beiglböck, M., Penkner, F. and Schachermayer, W. (2013) A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance . . · Zbl 1378.91129
[2] Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W. and Temme, J. (2013). A trajectorial interpretation of Doob’s martingale inequalities. Ann. Appl. Probab. 23 1494-1505. · Zbl 1274.60136 · doi:10.1214/12-AAP878
[3] Beiglböck, M., Henry-Labordère, P. and Penkner, F. (2013). Model-independent bounds for option prices-a mass transport approach. Finance Stoch. 17 477-501. · Zbl 1277.91162 · doi:10.1007/s00780-013-0205-8
[4] Beiglböck, M. and Nutz, M. (2014). Martingale inequalities and deterministic counterparts. arXiv preprint, . arXiv:1401.4698 · Zbl 1307.60044 · doi:10.1214/EJP.v19-3270
[5] Bouchard, B. and Nutz, M. (2013). Arbitrage and duality in nondominated discrete-time models. arXiv preprint, . arXiv:1305.6008 · Zbl 1322.60045 · doi:10.1214/14-AAP1011
[6] Brown, H., Hobson, D. and Rogers, L.C.G. (2001). Robust hedging of barrier options. Math. Finance 11 285-314. · Zbl 1047.91024 · doi:10.1111/1467-9965.00116
[7] Burkholder, D.L. (1966). Martingale transforms. Ann. Math. Statist. 37 1494-1504. · Zbl 0306.60030 · doi:10.1214/aoms/1177699141
[8] Burkholder, D.L. (2002). The best constant in the Davis inequality for the expectation of the martingale square function. Trans. Amer. Math. Soc. 354 91-105 (electronic). · Zbl 0984.60041 · doi:10.1090/S0002-9947-01-02887-2
[9] Burkholder, D.L. and Gundy, R.F. (1970). Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124 249-304. · Zbl 0223.60021 · doi:10.1007/BF02394573
[10] Chou, C.S. (1975). Les méthodes d’A. Garsia en théorie des martingales. Extensions au cas continu. In Séminaire de Probabilités IX Université de Strasbourg. Lecture Notes in Math. 465 213-225. Berlin: Springer.
[11] Chow, Y.S. and Teicher, H. (2012). Probability Theory : Independence , Interchangeability , Martingales . New York: Springer. · Zbl 1049.60001
[12] Cox, A.M.G., Hobson, D. and Obłój, J. (2008). Pathwise inequalities for local time: Applications to Skorokhod embeddings and optimal stopping. Ann. Appl. Probab. 18 1870-1896. · Zbl 1165.60020 · doi:10.1214/07-AAP507
[13] Cox, A.M.G. and Obłój, J. (2011). Robust hedging of double touch barrier options. SIAM J. Financial Math. 2 141-182. · Zbl 1228.91067 · doi:10.1137/090777487
[14] Cox, A.M.G. and Obłój, J. (2011). Robust pricing and hedging of double no-touch options. Finance Stoch. 15 573-605. · Zbl 1303.91171 · doi:10.1007/s00780-011-0154-z
[15] Cox, A.M.G. and Wang, J. (2013). Root’s barrier: Construction, optimality and applications to variance options. Ann. Appl. Probab. 23 859-894. · Zbl 1266.91101 · doi:10.1214/12-AAP857
[16] Davis, B. (1970). On the integrability of the martingale square function. Israel J. Math. 8 187-190. · Zbl 0211.21902 · doi:10.1007/BF02771313
[17] Davis, M., Obłój, J. and Raval, V. (2010) Arbitrage bounds for prices of options on realized variance. ArXiv e-prints. · Zbl 1314.91209 · doi:10.1111/mafi.12021
[18] Dolinsky, Y. and Soner, H.M. (2013). Robust hedging with proportional transaction costs. arXiv e-prints. · Zbl 1304.91189 · doi:10.1007/s00780-014-0227-x
[19] Dolinsky, Y. and Soner, M.H. (2012). Robust hedging and martingale optimal transport in continuous time. arXiv e-prints. · Zbl 1305.91215 · doi:10.1007/s00440-013-0531-y
[20] Galichon, A., Henry-Labordère, P. and Touzi, N. (2011). A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options. · Zbl 1285.49012 · doi:10.1214/13-AAP925
[21] Hobson, D. (1998). Robust hedging of the lookback option. Finance Stoch. 2 329-347. · Zbl 0907.90023 · doi:10.1007/s007800050044
[22] Hobson, D. (2011). The Skorokhod embedding problem and model-independent bounds for option prices. In Paris-Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Math. 2003 267-318. Berlin: Springer. · Zbl 1214.91113 · doi:10.1007/978-3-642-14660-2_4
[23] Hobson, D. and Klimmek, M. (2012). Model-independent hedging strategies for variance swaps. Finance Stoch. 16 611-649. · Zbl 1262.91134 · doi:10.1007/s00780-012-0190-3
[24] Hobson, D. and Neuberger, A. (2012). Robust bounds for forward start options. Math. Finance 22 31-56. · Zbl 1278.91162 · doi:10.1111/j.1467-9965.2010.00473.x
[25] Hobson, D.G. and Pedersen, J.L. (2002). The minimum maximum of a continuous martingale with given initial and terminal laws. Ann. Probab. 30 978-999. · Zbl 1016.60047 · doi:10.1214/aop/1023481014
[26] Meyer, P.A. (1976). Un cours sur les intégrales stochastiques. In Séminaire de Probabilités , X ( Seconde Partie : Théorie des Intégrales Stochastiques , Univ. Strasbourg , Strasbourg , Année Universitaire 1974 / 1975). Lecture Notes in Math. 511 245-400. Berlin: Springer.
[27] Obłój, J. (2004). The Skorokhod embedding problem and its offspring. Probab. Surv. 1 321-390. · Zbl 1189.60088 · doi:10.1214/154957804100000060
[28] Obłój, J. and Yor, M. (2006). On local martingale and its supremum: Harmonic functions and beyond. In From Stochastic Calculus to Mathematical Finance 517-533. Berlin: Springer. · Zbl 1120.60045 · doi:10.1007/978-3-540-30788-4_25
[29] Ose\ogonek kowski, A. (2010). Sharp maximal inequalities for the martingale square bracket. Stochastics 82 589-605. · Zbl 1210.60044 · doi:10.1080/17442501003660468
[30] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 293 . Berlin: Springer. · Zbl 0917.60006
[31] Rogers, L.C.G. (1993). The joint law of the maximum and terminal value of a martingale. Probab. Theory Related Fields 95 451-466. · Zbl 0794.60042 · doi:10.1007/BF01196729
[32] Rogers, L.C.G. and Williams, D. (2000). Diffusions , Markov Processes , and Martingales. Vol. 2, Itô Calculus. Cambridge Mathematical Library . Cambridge: Cambridge Univ. Press. Reprint of the second (1994) edition. · Zbl 0826.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.