×

Quasi-Monte Carlo methods for the numerical integration of multivariate Walsh series. (English) Zbl 0855.11042

The authors consider quasi-Monte Carlo methods for the numerical integration of multivariate Walsh series by approximating the integrals via net-sequences. Best possible bounds are shown for the integration error \(R_N (f)\) when the integration points form a \((t, m, s)\)-net in \([0, 1]^s\) in base \(b\). More precisely it is proved that \[ R_N (f)\;\ll\;b^{t(\alpha- (1/2))} {{(\log N)^{s-1}} \over {N^{\alpha- (1/2)}}}, \] provided that \(f\) belongs to an \(E_s^\alpha\)-class with respect to the Walsh series in base \(b\). This improves an earlier paper of the authors and C. Traunfellner [Math. Comput. 63, 277-291 (1994; Zbl 0806.65013)].
Reviewer: R.F.Tichy (Graz)

MSC:

11K45 Pseudo-random numbers; Monte Carlo methods
65C05 Monte Carlo methods
65D30 Numerical integration

Citations:

Zbl 0806.65013
Full Text: DOI

References:

[1] Larcher, G.; Traunfellner, C., On the numerical integration of Walsh series by number-theoretic methods, Math. Comp., 63, 277-291 (1994) · Zbl 0806.65013
[2] Larcher, G.; Schmid, W. Ch.; Wolf, R., Representation of functions as Walsh series to different bases and an application to the numerical integration of high-dimensional Walsh series, Math. Comp., 63, 701-716 (1994) · Zbl 0821.42017
[3] Larcher, G., A class of low-discrepancy point-sets and its application to numerical integration by number-theoretical methods, (Halter-Koch, F.; Tichy, R., Österreichisch- Ungarisch-Slowakisches Kolloquium über Zahlentheorie. Österreichisch- Ungarisch-Slowakisches Kolloquium über Zahlentheorie, Grazer Math. Ber., Volume 318 (1993), Karl-Franzens-Univ. Graz: Karl-Franzens-Univ. Graz Graz), 69-80 · Zbl 0789.11045
[4] Larcher, G.; Schmid, W. Ch., On the numerical integration of high-dimensional Walsh series by quasi-Monte Carlo methods, (Colloque Probabilites Numerique. Colloque Probabilites Numerique, Paris, 1993. Colloque Probabilites Numerique. Colloque Probabilites Numerique, Paris, 1993, Math. Comput. Simulation., Volume 38 (1995), Elsevier, North-Holland), 127-134 · Zbl 0924.65017
[5] Niederdrenk, K., Die endliche Fourier- und Walsh-Transformation mit einer Einführung in die Bildverarbeitung (1982), Vieweg: Vieweg Braunschweig · Zbl 0519.65095
[6] Zinterhof, P.; Zinterhof, P., Hyperbolic filtering of Walsh series; a new method for data compression, (Technical Report 03 (1994), Research Institute for Software Technology, University of Salzburg) · Zbl 0917.65020
[7] Niederreiter, H., Point sets and sequences with small discrepancy, Monatsh. Math., 104, 273-337 (1987) · Zbl 0626.10045
[8] Niederreiter, H., Low-discrepancy and low-dispersion sequences, J. Number Theory, 30, 51-70 (1988) · Zbl 0651.10034
[9] Niederreiter, H., Low-discrepancy point sets obtained by digital constructions over finite fields, Czechoslovak Math. J., 42, 143-166 (1992) · Zbl 0757.11024
[10] Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods, (Number 63 in CBMS-NSF Series in Applied Mathematics (1992), SIAM: SIAM Philadelphia) · Zbl 0761.65002
[11] Niederreiter, H., Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes, Discrete Math., 106/107, 361-367 (1992) · Zbl 0918.11045
[12] Larcher, G., Nets obtained from rational functions over finite fields, Acta Arith., 63, 1-13 (1993) · Zbl 0770.11040
[13] G. Larcher, A. Lauß, H. Niederreiter and W.Ch. Schmid, Optimal polynomials for (t, m, s)SIAM J. Num. Analysis; G. Larcher, A. Lauß, H. Niederreiter and W.Ch. Schmid, Optimal polynomials for (t, m, s)SIAM J. Num. Analysis · Zbl 0861.65019
[14] Kuipers, L.; Niederreiter, H., Uniform Distribution of Sequences (1974), John Wiley: John Wiley New York · Zbl 0281.10001
[15] Jameson, G. J.O., Summing and Nuclear Norms in Banach Space Theory, (Number 8 in London Mathematical Society student texts (1987), Cambridge University Press) · Zbl 0634.46007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.