×

Quantitative stratification and the regularity of harmonic map flow. (English) Zbl 1317.53081

Summary: In this paper, we prove estimates and quantitative regularity results for the harmonic map flow. First, we consider \(H^1_{\mathrm{loc}}\)-maps \(u\) defined on a parabolic ball \(P\subset M^m\times\mathbb R\) and with target manifold \(N\), that have bounded Dirichlet-energy and Struwe-energy. We define a quantitative stratification, which groups together points in the domain into quantitative weakly singular strata \(\mathcal S^j_{\eta,r}(u)\) according to the number of approximate symmetries of \(u\) at certain scales. We prove that their tubular neighborhoods have small volume, namely \(\mathrm{Vol}\left( T_r(\mathcal S^j_{\eta ,r}(u))\right)\leq Cr^{m+2-j-\varepsilon}\), where \(C\) depends on \(\eta,\varepsilon\) and some additional parameters; for the precise statement see Theorem 1.5. In particular, this generalizes the known Hausdorff estimate \(\dim\mathcal S^j(u)\leq j\) for the weakly singular strata of suitable weak solutions of the harmonic map flow. As an application, specializing to Chen-Struwe solutions with target manifolds that do not admit certain harmonic and quasi-harmonic spheres, we obtain refined Minkowski estimates for the singular set, which generalize a result of [F. Lin and C. Wang, Commun. Anal. Geom. 7, No. 2, 397–429 (1999; Zbl 0934.58018)]. We also obtain \(L^p\)-estimates for the reciprocal of the regularity scale. Our results for harmonic map flow are analogous to results for mean curvature flow we proved in [J. Cheeger et al., Geom. Funct. Anal. 23, No. 3, 828–847 (2013; Zbl 1277.53064)].

MSC:

53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
58E20 Harmonic maps, etc.
35K91 Semilinear parabolic equations with Laplacian, bi-Laplacian or poly-Laplacian

References:

[1] Anderson, R.D., Klee Jr, V.L.: Convex functions and upper semi-continuous collections. Duke Math. J. 19, 349-357 (1952) · Zbl 0047.15702
[2] Cheeger, J.: Quantitative differentiation: a general formulation. Commun. Pure Appl. Math. 65(12), 1641-1670 (2012) · Zbl 1258.30027 · doi:10.1002/cpa.21424
[3] Cheeger, J., Haslhofer, R., Naber, A.: Quantitative stratification and the regularity of mean curvature flow. Geomat. Funct. Anal. 23(3), 828-847 (2013) · Zbl 1277.53064 · doi:10.1007/s00039-013-0224-9
[4] Chen, Y.M., Li, J., Lin, F.-H.: Partial regularity for weak heat flows into spheres. Commun. Pure Appl. Math. 48(4), 429-448 (1995) · Zbl 0827.35024 · doi:10.1002/cpa.3160480403
[5] Cheeger, J., Naber, A.: Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent. Math. 191(2), 321-339 (2013) · Zbl 1268.53053 · doi:10.1007/s00222-012-0394-3
[6] Cheeger, J., Naber, A.: Quantitative stratification and the regularity of harmonic maps and minimal currents. Commun. Pure Appl. Math. 66(6), 965-990 (2013) · Zbl 1269.53063 · doi:10.1002/cpa.21446
[7] Chen, Y.M., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201(1), 83-103 (1989) · Zbl 0652.58024 · doi:10.1007/BF01161997
[8] Eells Jr, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109-160 (1964) · Zbl 0122.40102 · doi:10.2307/2373037
[9] Feldman, M.: Partial regularity for harmonic maps of evolution into spheres. Commun. Partial Differ. Equs. 19(5-6), 761-790 (1994) · Zbl 0807.35021 · doi:10.1080/03605309408821034
[10] Lin, F.-H.: Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. Math. 149(3), 785-829 (1999) · Zbl 0949.58017 · doi:10.2307/121073
[11] Lin, F.-H., Wang, C.Y.: Harmonic and quasi-harmonic spheres. Commun. Anal. Geom. 7(2), 397-429 (1999) · Zbl 0934.58018
[12] Struwe, M.: On the evolution of harmonic maps in higher dimensions. J. Differ. Geom. 28(3), 485-502 (1988) · Zbl 0631.58004
[13] Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of \[22\]-spheres. Ann. of Math. (2) 113(1), 1-24 (1981) · Zbl 0462.58014
[14] White, Brian: Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math. 488, 1-35 (1997) · Zbl 0874.58007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.