×

Topology of acyclic complexes of tournaments and coloring. (English) Zbl 1327.13075

Author’s abstract: We prove that the acyclic complex \(\text{Acy}(T)\) of any trisectionable tournament \(T\) is homotopy equivalent to a wedge of spheres, and show that there exists a fix number \(0 < \epsilon < 1\) such that if \(T\) is a trisectionable tournament and \(d\) is the highest dimension of a sphere occurring in such a decomposition for \(\text{Acy}(T)\), then the (acyclic) chromatic number of \(T\) satisfies \(\chi(T)\leq c(d + 1)^{\frac{1}{\epsilon}-1}-1\) for some \(1.62 < c \leq 2\), and by way of an example, we verify that the provided upper bound is tight.

MSC:

13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
05C15 Coloring of graphs and hypergraphs
05C20 Directed graphs (digraphs), tournaments

Software:

OEIS
Full Text: DOI

Online Encyclopedia of Integer Sequences:

a(n) = ceiling(a(n-1)*3/2) with a(1) = 1.

References:

[1] Attali, D., Lieutier, A., Salinas, D.: Efficient data structure for representing and simplifying simplicial complexes in high dimensions. Int. J. Comput. Geom. 22, 279-303 (2012) · doi:10.1142/S0218195912600060
[2] Berger, E., Choromanski, K., Chudnovsky, M., Fox, J., Loebl, M., Scott, A., Seymour, P., Thomass, S.: Tournaments and colouring. J. Comb. Theory Ser. B 103, 1-20 (2013) · Zbl 1254.05064 · doi:10.1016/j.jctb.2012.08.003
[3] Biyikoglu, T., Civan, Y.: Four-cycled graphs with topological applications. Ann. Comb. 16, 37-56 (2012) · Zbl 1246.57062 · doi:10.1007/s00026-011-0120-7
[4] Burzio, M., Demaria, D.C.: On simply disconnected tournaments. Ars Comb. 24, 149-161 (1987) · Zbl 0712.05029
[5] Burzio, M., Demaria, D.C.: Characterization of tournaments by coned 3-cycles. Acta Univ. Carol. Math. Phys. 28, 25-30 (1987) · Zbl 0636.05029
[6] Demaria, D.C., Kiihl, J.C.S.: On the complete digraphs which are simply disconnected. Publ. Math. 35, 517-525 (1991) · Zbl 0757.05056 · doi:10.5565/PUBLMAT_35291_15
[7] Ehrenborg, R., Hetyei, G.: The topology of the independence complex. Eur. J. Comb. 27, 906-923 (2006) · Zbl 1090.05075 · doi:10.1016/j.ejc.2005.04.010
[8] Hoppe, H., Progressive meshes, 99-108 (1996), New York
[9] Marietti, M., Testa, D.: Cores of simplicial complex. Discrete Comput. Geom. 40, 444-468 (2008) · Zbl 1157.57013 · doi:10.1007/s00454-008-9081-y
[10] Matoušek, J., Using the Borsuk-Ulam theorem (2003), Heidelberg · Zbl 1016.05001
[11] Odlyzko, A.M., Wilf, H.S.: Functional iteration and the Josephus problem. Glasgow Math. 33, 235-240 (1991) · Zbl 0751.05007 · doi:10.1017/S0017089500008272
[12] Sloane, N.J.A.: The on-line encyclopedia of integer sequences. https://oeis.org · Zbl 1274.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.