×

Approximations for the waiting-time distribution in an \(M/PH/c\) priority queue. (English) Zbl 1311.90035

Summary: We investigate the use of priority mechanisms when assigning service engineers to customers as a tool for service differentiation. To this end, we analyze a non-preemptive \(M/PH/c\) priority queue with various customer classes. For this queue, we present various accurate and fast methods to estimate the first two moments of the waiting time per class given that all servers are occupied. These waiting time moments allow us to approximate the overall waiting time distribution per class. We subsequently apply these methods to real-life data in a case study.

MSC:

90B22 Queues and service in operations research

Software:

MCQueue

References:

[1] Al Hanbali A (2011) Busy period analysis of the level dependent PH/PH/1/K queue. Queueing Syst 67(3):221-249 · Zbl 1222.60069
[2] Al Hanbali A, de Haan R, Boucherie R, van Ommeren J-K (2012) Time-limited polling systems with batch arrivals and phase-type service times. Ann Oper Res 198(1):57-82 · Zbl 1259.90021 · doi:10.1007/s10479-011-0846-y
[3] Al Hanbali A, Alvarez EM, van der Heijden MC (2013) Approximations for the waiting time distribution in an M/G/c priority queue. Beta Working Paper, 411. http://beta.ieis.tue.nl/node/2084 · Zbl 1311.90035
[4] Altinkemer K, Bose I, Pal R (1998) Average waiting time of customers in an \[M/D/k\] M/D/k queue with nonpreemptive priorities. Comput Oper Res 25(4):317-328 · Zbl 1040.90510 · doi:10.1016/S0305-0548(97)00065-8
[5] Bertsimas D, Nakazato D (1995) The distributional Little’s law and its applications. Oper Res 43(2):298-310 · Zbl 0837.90048 · doi:10.1287/opre.43.2.298
[6] Buzen J, Bondi A (1983) Response times of priority classes under preemptive resume in \[M/M/m\] M/M/m queues. Oper Res 31(3):456-465 · Zbl 0514.90027 · doi:10.1287/opre.31.3.456
[7] Cohen JW (1969) The single server queue, Section III. 3.8(i). North-Holland, Amsterdam · Zbl 0183.49204
[8] Cohen M, Agrawal N, Agrawal V (2006) Winning the aftermarket. Harv Bus Rev 84(5):129-138
[9] Harchol-Balter M, Osogami T, Scheller-Wolf A, Wierman A (2005) Multi-server queueing systems with multiple priority classes. Queueing Syst 51(3):331-360 · Zbl 1085.60070 · doi:10.1007/s11134-005-2898-7
[10] Jagerman DL, Melamed B (2003) Models and approximations for call center design. Methodol Comput Appl Probab 5(2):159-181 · Zbl 1026.60103 · doi:10.1023/A:1024501601020
[11] Janssen A, Van Leeuwaarden J (2008) Back to the roots of the \[M/D/s\] M/D/s queue and the works of erlang, crommelin and pollaczek. Statistica Neerlandica 62(3):299-313 · Zbl 1146.60073 · doi:10.1111/j.1467-9574.2008.00395.x
[12] Jardine AKS, Tsang AHC (2006) Maintenance, replacement, and reliability: theory and applications. CRC Press, Boca Raton · Zbl 1140.90022
[13] Kella O, Yechiali U (1985) Waiting times in the non-preemptive priority \[M/M/c\] M/M/c queue. Stoch Models 1(2):257-262 · Zbl 0594.60096 · doi:10.1080/15326348508807014
[14] Kimura T (1983) Diffusion approximation for an M/G/m queue. Oper Res 31(2):304-321 · Zbl 0507.90033 · doi:10.1287/opre.31.2.304
[15] Law A (2007) Simulation modeling and analysis. McGraw-Hill, New York · Zbl 0837.90048
[16] Marie R (1980) Calculating equilibrium probabilities for \[\lambda (n)/c_k /1/n\] λ(n)/ck/1/n queues. In: Proceedings of performance ’80. Canada, Toronto, pp 117-125 · Zbl 1165.90414
[17] Munnik M (2011) Service level agreements at Océ development of a queuing model which can predict the waiting time of corrective maintenance jobs at the Planning Department. MSc Thesis, University of Twente · Zbl 0837.90048
[18] Neuts MF (1981) Matrix-geometric solutions in stochastic models: an algorithmic approach. Johns Hopkins University Press, Baltimore · Zbl 0469.60002
[19] Nojo S, Watanabe H (1987) A new stage method getting arbitrary coefficient of variation by two stages. IEICE Trans E 70(1):33-36
[20] Riordan J (1962) Stochastic service systems. Wiley, New York · Zbl 0106.33601
[21] Sleptchenko A, van Harten A, van der Heijden MC (2005) An exact solution for the state probabilities of the multi-class, multi-server queue with preemptive priorities. Queueing Syst 50(1):81-108 · Zbl 1080.90036 · doi:10.1007/s11134-005-0359-y
[22] Tijms H (1988) A quick and practical approximation to the waiting time distribution in the multi-server queue with priorities. In: Iazeolla G et al (eds) Computer performance and reliability. North-Holland, Amsterdam, pp 161-169
[23] Tijms H (2003) A first course in stochastic models. Wiley, New York · Zbl 1088.60002
[24] van der Heijden MC (1993) Performance analysis for reliability and inventory models. PhD thesis, Free University Amsterdam
[25] Wagner D (1997) Analysis of mean values of a multi-server model with non-preemptive priorities and non-renewal input. Stoch Models 13(1):67-84 · Zbl 0871.60054
[26] Williams T (1980) Nonpreemptive multi-server priority queues. J Oper Res Soc 31(2):1105-1107 · Zbl 0444.60095
[27] Whitt W (1992) Understanding the efficiency of multi-server service systems. Manag Sci 38(5):708-723 · Zbl 0825.90409 · doi:10.1287/mnsc.38.5.708
[28] Zeltyn S, Feldman Z, Wasserkrug S (2009) Waiting and sojourn times in a multi-server queue with mixed priorities. Queueing Syst 61(4):305-328 · Zbl 1165.90414 · doi:10.1007/s11134-009-9110-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.