×

Semiparametric time series models with log-concave innovations: maximum likelihood estimation and its consistency. (English) Zbl 1378.62061

Summary: We study semiparametric time series models with innovations following a log-concave distribution. We propose a general maximum likelihood framework that allows us to estimate simultaneously the parameters of the model and the density of the innovations. This framework can be easily adapted to many well-known models, including autoregressive moving average (ARMA), generalized autoregressive conditionally heteroscedastic (GARCH), and ARMA-GARCH models. Furthermore, we show that the estimator under our new framework is consistent in both ARMA and ARMA-GARCH settings. We demonstrate its finite sample performance via a thorough simulation study and apply it to model the daily log-return of the FTSE100 index.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G32 Statistics of extreme values; tail inference
62G20 Asymptotic properties of nonparametric inference

References:

[1] Bagnoli, M. & Bergstrom, T. (2005). Log‐concave probability and its applications. Economet. Theor.26, 445-469. · Zbl 1077.60012
[2] Balabdaoui, F., Rufibach, K. & Wellner, J. A. (2009). Limit distribution theory for maximum likelihood estimation of a log‐concave density. Ann. Statist.37, 1299-1331. · Zbl 1160.62008
[3] Billingsley, P. (1995). Probability and measure, (3rd edn.)., John Wiley & Sons, New York. · Zbl 0822.60002
[4] Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. J. Econometrics31, 307-327. · Zbl 0616.62119
[5] Bougerol, P. & Picard, N. (1992). Stationarity of GARCH processes and of some nonnegative time series. J. Econometrics52, 115-127. · Zbl 0746.62087
[6] Brockwell, P. J. & Davis, R. A. (1991). Time series: theory and methods, (2nd edn.)., Springer‐Verlag, New York. · Zbl 0709.62080
[7] Brockwell, P. J. & Lindner, A. (2010). Strict stationary solutions of autoregressive moving average equations. Biometrika97, 765-772. · Zbl 1195.62137
[8] Chen, Y. (2011). Semiparametric time series models with log‐concave innovations: maximum likelihood estimation and its consistency. arXiv:1111.6291.
[9] Chen, X., Liao, Z. & Sun, Y. (2012). Sieve inference on semi‐nonparametric time series models, Cowles foundation discussion paper, No. 1849.
[10] Chen, Y. & Samworth, R. J. (2013). Smoothed log‐concave maximum likelihood estimation with applications. Statist. Sinica23, 1373-1398. · Zbl 1534.62045
[11] Cule, M. & Samworth, R. (2010). Theoretical properties of the log‐concave maximum likelihood estimator of a multidimensional density. Electron. J. Stat.4, 254-270. · Zbl 1329.62183
[12] Cule, M., Samworth, R. & Stewart, M. (2010). Maximum likelihood estimation of a multi‐dimensional log‐concave density (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol.72, 545-607. · Zbl 1411.62055
[13] Damsleth, E. & El‐Shaarawi, A. H. (1989). ARMA models with double‐exponentially distributed noise. J. R. Stat. Soc. Ser. B Stat. Methodol.51, 61-69.
[14] Diggle, P., Liang, K‐Y. & Zeger, S. (2002). Analysis of longitudinal data, (2nd edn.)., Oxford University Press, Oxford.
[15] Drost, F. C. & Klaassen, C. A. J. (1997). Efficient estimation in semiparametric GARCH models. J. Econometrics81, 193-221. · Zbl 0944.62120
[16] Drost, F. C., Klaassen, C. A. J. & Werker, B. J. M. (1997). Adaptive estimation in time‐series models. Ann. Statist.25, 786-817. · Zbl 0941.62093
[17] Dümbgen, L. & Rufibach, K. (2009). Maximum likelihood estimation of a log‐concave density and its distribution function: basic properties and uniform consistency. Bernoulli15, 40-68. · Zbl 1200.62030
[18] Dümbgen, L. & Rufibach, K. (2011). logcondens: computations related to univariate log‐concave density estimation. J. Stat. Softw.39, 1-28.
[19] Dümbgen, L., Hüsler, A. & Rufibach, K. (2011). Active set and EM algorithms for log‐concave densities based on complete and censored data. Technical report 61, IMSV, Univ. Bern. arXiv:0707.4643v4.
[20] Dümbgen, L., Samworth, R. & Schuhmacher, D. (2011). Approximation by log‐concave distributions with applications to regression. Ann. Statist.39, 702-730. · Zbl 1216.62023
[21] Dümbgen, L., Samworth, R. J. & Schuhmacher, D. (2013). Stochastic search for semiparametric linear regression models. In From probability to statistics and back: high‐dimensional models and processes – a Festschrift in honor of Jon A. Wellner (eds M.Banerjee (ed.), F.Bunea (ed.), J.Huang (ed.), V.Koltchinskii (ed.) & M. H.Maathuis (ed.)), Institute of Mathematical Statistics, Ohio, USA; 78-90. · Zbl 1327.62204
[22] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica50, 987-1007. · Zbl 0491.62099
[23] Engle, R. F. & Gonzalez‐Rivera, G. (1991). Semiparametric ARCH models. J. Bus. Econom. Statist.9, 345-359.
[24] Fan, J., Qi, L. & Xiu, D. (2014). Quasi maximum likelihood estimation of GARCH models with heavy‐tailed likelihoods (with discussion). J. Bus. Econom. Statist. to appear.
[25] Francq, C. & Zakoïan, J. ‐M. (2004). Maximum likelihood estimation of pure GARCH and ARMA‐GARCH processes. Bernoulli10, 605-637. · Zbl 1067.62094
[26] Francq, C. & Zakoïan, J‐M. (2010). GARCH models: structure, statistical inference and financial applications, John Wiley & Sons, New York.
[27] Francq, C., Lepage, G. & Zakoïan, J. ‐M. (2011). Two‐stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE. J. Econometrics165, 246-257. · Zbl 1441.62692
[28] Granger, C. W. J. & Ding, Z. (1995). Some properties of absolute return: an alternative measure of risk. Ann. Econ. Stat.40, 67-91.
[29] Groeneboom, P., Jongbloed, G. & Wellner, J. A. (2001). Estimation of a convex function: characterizations and asymptotic theory. Ann. Statist.29, 1653-1698. · Zbl 1043.62027
[30] Haas, M., Mittnik, S. & Paolella, M. S. (2006). Modelling and predicting market risk with Laplace‐Gaussian mixture distributions. Applied Financial Economics16, 1145-1162.
[31] Hannan, E. J. (1970). Multiple time series, John Wiley & Sons, New York. · Zbl 0211.49804
[32] Koenker, R. & Hallock, K. F. (2001). Quantile regression. J. Econ. Perspect.15, 143-156.
[33] Koenker, R. & Mizera, I. (2010). Quasi‐concave density estimation. Ann. Statist.38, 2998-3027. · Zbl 1200.62031
[34] Kreiss, J. ‐P. (1987). On adaptive estimation in stationary ARMA processes. Ann. Statist.15, 112-133. · Zbl 0616.62042
[35] Li, W. ‐K. & Mcleod, A. (1988). ARMA modelling with non‐Gaussian innovations. J. Time Series Anal.9, 155-168. · Zbl 0637.62079
[36] Ling, S. & McAleer, M. (2003). On adaptive estimation in nonstationary ARMA models with GARCH errors. Ann. Statist.31, 642-674. · Zbl 1039.62084
[37] Mammen, E. & Park, B. U. (1997). Optimal smoothing in adaptive location estimation. J. Statist. Plann. Inference58, 333-348. · Zbl 0877.62033
[38] Nelder, J. A. & Mead, R. (1965). A simplex algorithm for function minimization. Comput. J.7, 308-313. · Zbl 0229.65053
[39] Newey, W. K. & Steigerwald, D. G. (1997). Asymptotic bias for quasi‐maximum‐likelihood estimators in conditional heteroscedasticity models. Econometrica65, 587-599. · Zbl 0870.62091
[40] Pal, J. K., Woodroofe, M. & Meyer, M. (2007). Estimating a Polya frequency function. In Complex datasets and inverse problems: tomography, networks and beyond, vol. 54 (eds R. Y.Liu (ed.), W. E.Strawderman (ed.) & C.‐H.Zhang (ed.)), Lecture notes ‐ monograph seriesInstitute of Mathematical Statistics, Ohio; 239-249.
[41] Pan, J., Wang, H. & Yao, Q. (2007). Weighted least absolute deviations estimation for ARMA models with infinite variance. Economet. Theor.23, 852-879. · Zbl 1237.62122
[42] Price, K., Storn, R. M. & Lampinen, J. A. (2005). Differential evolution: a practical approach to global optimization, Springer‐Verlag, Berlin. · Zbl 1186.90004
[43] Rockafellar, R. T. (1997). Convex analysis, Princeton University Press, Princeton, New Jersey. · Zbl 0932.90001
[44] Rufibach, K. (2012). A smooth ROC curve estimator based on log‐concave density estimates. Int. J. Biostat.8, 1-29.
[45] Samworth, R. J. & Yuan, M. (2012). Independent component analysis via nonparametric maximum likelihood estimation. Ann. Statist.40, 2973-3002. · Zbl 1296.62084
[46] Schuhmacher, D., Hüsler, A. & Dümbgen, L. (2011). Multivariate log‐concave distributions as a nearly parametric model. Statistics and Risk Modeling28, 277-295. · Zbl 1245.62060
[47] Seregin, A. & Wellner, J. A. (2010). Nonparametric estimation of convex‐transformed densities. Ann. Statist.38, 3751-3781. · Zbl 1204.62058
[48] Silverman, B. W. (1982). On the estimation of a probability density function by the maximum penalized likelihood method. Ann. Statist.10, 795-810. · Zbl 0492.62034
[49] Sun, Y. & Stengos, T. (2006). Semiparametric efficient adaptive estimation of asymmetric GARCH models. J. Econometrics133, 373-386. · Zbl 1345.62122
[50] Tao, P. ‐C., Yevjevich, V. & Kottegoda, N. (1976). Distribution of hydrologic independent stochastic components, Hydrology Papers 82, Colorado State University, Fort Collins.
[51] Trindade, A. A., Zhu, Y. & Andrews, B. (2010). Time series models with asymmetric Laplace innovations. J. Stat. Comput. Sim.80, 1317-1333. · Zbl 1205.62135
[52] Villani, C. (2009). Optimal transport: old and new, Springer‐Verlag, Berlin. · Zbl 1156.53003
[53] Walther, G. (2002). Detecting the presence of mixing with multiscale maximum likelihood. J. Amer. Statist. Assoc.97, 508-513. · Zbl 1073.62533
[54] Wuertz, D. & Chalabi, Y. (2013). fGarch: Rmetrics ‐ autoregressive conditional heteroskedastic modelling. Rpackage version 2150.82. Available from http://cran.r‐project.org/web/packages/fGarch/.
[55] Xia, Y. & Tong, H. (2010). Discussion of the paper Maximum likelihood estimation of a multi‐dimensional log‐concave density by Cule, Samworth and Stewart. J. R. Stat. Soc. Ser. B Stat. Methodol.72, 585.
[56] Yao, Q. (2010). Discussion of the paper Maximum likelihood estimation of a multi‐dimensional log‐concave density by Cule, Samworth and Stewart. J. R. Stat. Soc. Ser. B Stat. Methodol.72, 588.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.