×

Stability of electromagnetic cavities perturbed by small perfectly conducting inclusions. (Stabilité des cavités électromagnétiques perturbées par des petites inclusions parfaitement conductrices.) (English. Abridged French version) Zbl 1315.35212

Recently, a series of papers have dealt with stability problems for electromagnetic scattering in homogeneous ambient media containing small penetrable heterogenities. The author succeeds in adapting this technique to the current problem by introducing a number of spaces related to \(L^2\) on a bounded Lipschitz open set in \(\mathbb{R}^3\). He then proves an asymptotic Hardy inequality, and finishes the article by proving the required stability theorem. The proofs use the topological dual of \(H_0\), and weak convergence.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
78A45 Diffraction, scattering
Full Text: DOI

References:

[1] Ammari, H.; Volkov, D., Asymptotic formulas for perturbations in the eigenfrequencies of the full Maxwell equations due to the presence of imperfections of small diameter, Asymptot. Anal., 30, 3-4, 331-350 (2002) · Zbl 1026.78005
[2] Ammari, H.; Vogelius, M. S.; Volkov, D., Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. II. The full Maxwell equations, J. Math. Pures Appl. (9), 80, 8, 769-814 (2001) · Zbl 1042.78002
[3] Daveau, C.; Khelifi, A., Asymptotic behaviour of the energy for electromagnetic systems in the presence of small inhomogeneities, Appl. Anal., 91, 5, 857-877 (2012) · Zbl 1247.78004
[4] Griesmaier, R., An asymptotic factorization method for inverse electromagnetic scattering in layered media, SIAM J. Appl. Math., 68, 5, 1378-1403 (2008) · Zbl 1156.35339
[5] Griesmaier, R., Detection of small buried objects: asymptotic factorization and MUSIC (2008), Johannes Gutenberg-Universität: Johannes Gutenberg-Universität Mainz, Germany, PhD thesis
[6] Griesmaier, R., A general perturbation formula for electromagnetic fields in presence of low volume scatterers, ESAIM: Math. Model. Numer. Anal., 45, 6, 1193-1218 (2011) · Zbl 1277.78021
[7] Hiptmair, R., Finite elements in computational electromagnetism, Acta Numer., 11, 237-339 (2002) · Zbl 1123.78320
[8] Il’in, A. M., Study of the asymptotic behavior of the solution of an elliptic boundary value problem in a domain with a small hole, Tr. Semin. Im. I.G. Petrovskogo, 6, 57-82 (1981) · Zbl 0461.35032
[9] Il’in, A. M., Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translations of Mathematical Monographs, vol. 102 (1992), AMS: AMS Providence, RI · Zbl 0754.34002
[10] Maz’ya, V. G.; Nazarov, S. A., Asymptotic behavior of energy integrals under small perturbations of the boundary near corner and conic points, Tr. Mosk. Mat. Obŝ., 50, 79-129 (1987), 261 · Zbl 0668.35027
[11] Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ, B. A., Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings, Izv. Akad. Nauk SSSR, Ser. Mat., 48, 2, 347-371 (1984)
[12] Maz’ya, V.; Nazarov, S.; Plamenevskij, B., Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. I, Operator Theory: Advances and Applications, vol. 111 (2000), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1127.35301
[13] Nazarov, S. A., Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions, (Proceedings of the St. Petersburg Mathematical Society, Vol. V. Proceedings of the St. Petersburg Mathematical Society, Vol. V, Amer. Math. Soc. Transl. Ser. 2, vol. 193 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 77-125 · Zbl 0968.35038
[14] Nazarov, S. A.; Sokołowski, J., Self-adjoint extensions for the Neumann Laplacian and applications, Acta Math. Sin. Engl. Ser., 22, 3, 879-906 (2006) · Zbl 1284.49048
[15] Picard, R., Randwertaufgaben in der verallgemeinerten Potentialtheorie, Math. Methods Appl. Sci., 3, 2, 218-228 (1981) · Zbl 0466.31016
[16] Taylor, M. E., Partial Differential Equations I. Basic Theory, Applied Mathematical Sciences, vol. 115 (2011), Springer: Springer New York · Zbl 1206.35002
[17] Weber, Ch., A local compactness theorem for Maxwell’s equations, Math. Methods Appl. Sci., 2, 1, 12-25 (1980) · Zbl 0432.35032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.