×

A gap theorem for minimal submanifolds in Euclidean space. (Un théorème de seuil pour les sous-variétés minimales dans l’espace euclidien.) (English. French summary) Zbl 1308.53022

Summary: We prove that for a complete minimal submanifold \(M^n\) immersed in the Euclidean space \(\mathbb R^{n+d}\), if the second fundamental form \(A\) and the intrinsic distance function \(r\) from a fixed point satisfy \(r(x)| A| (x)\leq\varepsilon\) for all \(x\in M\), where \(\epsilon\) is a positive constant depending only on \(n\), then \(M\) is an affine subspace of \(\mathbb R^{n+d}\).

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces
Full Text: DOI

References:

[1] Anderson, M. T., The compactification of a minimal submanifold in Euclidean space by the Gauss map (1986), IHES/Caltech Preprint
[2] Andrews, B.; Baker, C., Mean curvature flow of pinched submanifolds to spheres, J. Differ. Geom., 85, 357-395 (2010) · Zbl 1241.53054
[3] Bray, H., Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differ. Geom., 59, 177-267 (2001) · Zbl 1039.53034
[4] Carron, G., Some old and new results about rigidity of critical metric · Zbl 1315.53024
[5] Chern, S. S.; do Carmo, M.; Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of constant length, (Functional Analysis and Related Fields (1970), Springer-Verlag), 59-75 · Zbl 0216.44001
[6] Colding, T. H.; Minicozzi, W. P., Minimal submanifolds, Bull. Lond. Math. Soc., 38, 353-395 (2006) · Zbl 1111.53007
[7] Ding, Q.; Xin, Y. L., On Chern’s problem for rigidity of minimal hypersurfaces in the spheres, Adv. Math., 227, 131-145 (2011) · Zbl 1216.49036
[8] Kasue, A., Gap theorems for minimal submanifolds of Euclidean space, J. Math. Soc. Jpn., 38, 473-492 (1986) · Zbl 0611.53048
[9] Kasue, A.; Sugahara, K., Gap theorems for certain submanifolds of Euclidean space and hyperbolic space form II, (Curvature and Topology of Riemannian Manifolds, Proceedings. Curvature and Topology of Riemannian Manifolds, Proceedings, Katata 1985. Curvature and Topology of Riemannian Manifolds, Proceedings. Curvature and Topology of Riemannian Manifolds, Proceedings, Katata 1985, Lect. Notes Math., vol. 1201 (1985), Springer-Verlag: Springer-Verlag Berlin-Heidelberg-New York) · Zbl 0621.53044
[10] Kasue, A.; Sugahara, K., Gap theorems for certain submanifolds of Euclidean spaces and hyperbolic space forms, Osaka J. Math., 24, 679-704 (1987) · Zbl 0642.53058
[11] Lawson, H. B., Local rigidity theorems for minimal hypersurfaces, Ann. Math., 89b, 187-197 (1969) · Zbl 0174.24901
[12] Ni, L., Gap theorems for minimal submanifolds in \(R^{n + 1}\), Commun. Anal. Geom., 9, 641-656 (2001) · Zbl 1020.53041
[13] Schoen, R.; Yau, S. T., On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., 65, 45-76 (1979) · Zbl 0405.53045
[14] Schoen, R.; Yau, S. T., Lectures on Differential Geometry (2010), International Press of Boston
[15] Schoen, R.; Simon, L.; Yau, S. T., Curvature estimates for minimal hypersurfaces, Acta Math., 134, 276-288 (1975) · Zbl 0323.53039
[16] Shiohama, K.; Xu, H. W., The topological sphere theorem for complete submanifolds, Compos. Math., 107, 221-232 (1997) · Zbl 0905.53038
[17] Simons, J., Minimal varieties in Riemannian manifolds, Ann. Math., 88, 62-105 (1968) · Zbl 0181.49702
[18] Xu, H. W.; Gu, J. R., A general gap theorem for submanifolds with parallel mean curvature in \(R^{n + p}\), Commun. Anal. Geom., 15, 175-193 (2007) · Zbl 1122.53033
[19] Xu, H. W.; Xu, Z. Y., The second pinching theorem for hypersurfaces with constant mean curvature in a sphere, Math. Ann., 356, 869-883 (2013) · Zbl 1272.53034
[20] Yau, S. T., Submanifolds with constant mean curvature I, II, Amer. J. Math.. Amer. J. Math., Amer. J. Math., 97, 76-100 (1975) · Zbl 0304.53042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.