×

Interface motion in random media. (English) Zbl 1321.82018

The authors propose a multi-scale renormalization procedure to study the dynamics of surfaces in a random environment. According to the main result, assuming that a certain finite size criterion is satisfied, the interface evolves with positive velocity. It is checked that this feasibility criterion holds in a large number of cases. Qualitatively speaking, this result means that, as the surface is evolving, deeper traps are encountered in various scales which locally block the interface dynamics.

MSC:

82B26 Phase transitions (general) in equilibrium statistical mechanics
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics
35R60 PDEs with randomness, stochastic partial differential equations
60K35 Interacting random processes; statistical mechanics type models; percolation theory

References:

[1] Aizenman M., Barsky D.J.: Sharpness of the phase transition in percolation models. Comm. Math. Phys. 108(3), 489-526 (1987) · Zbl 0618.60098 · doi:10.1007/BF01212322
[2] Aizenman Michael., Chayes J.T., Chayes Lincoln., Fröhlich J., Russo L.: On a sharp transition from area law to perimeter law in a system of random surfaces. Commun. Math. Phys. 92(1), 19-69 (1983) · Zbl 0529.60099 · doi:10.1007/BF01206313
[3] Barabási A.-L., Eugene Stanley H.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995) · Zbl 0838.58023 · doi:10.1017/CBO9780511599798
[4] Bezuidenhout C., Grimmett G.: The critical contact process dies out. Ann. Probab. 18(4), 1462-1482 (1990) · Zbl 0718.60109 · doi:10.1214/aop/1176990627
[5] Bollobás B., Riordan O.: Percolation. Cambridge University Press, New York (2006) · Zbl 1118.60001 · doi:10.1017/CBO9781139167383
[6] Coville J., Dirr N., Luckhaus S.: Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Netw. Heterog. Media 5(4), 745-763 (2010) · Zbl 1259.35231 · doi:10.3934/nhm.2010.5.745
[7] Dirr N., Dondl P.W., Grimmett G.R., Holroyd A.E., Scheutzow M.: Lipschitz percolation. Electron. Commun. Probab. 15, 14-21 (2010) · Zbl 1193.60115 · doi:10.1214/ECP.v15-1521
[8] Dirr N., Dondl P.W., Scheutzow M.: Pinning of interfaces in random media. Interfaces Free Bound. 13(3), 411-421 (2011) · Zbl 1231.35323 · doi:10.4171/IFB/265
[9] Dondl P.W., Scheutzow M.: Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Netw. Heterog. Media 7(1), 137-150 (2012) · Zbl 1262.35129 · doi:10.3934/nhm.2012.7.137
[10] Fisher D.S.: Sliding charge-density waves as a dynamic critical phenomenon. Phys. Rev. B 31, 1396-1427 (1985) · doi:10.1103/PhysRevB.31.1396
[11] Fisher, M.E.: Renormalization group theory: its basis and formulation in statistical physics. In: Conceptual foundations of quantum field theory (Boston, MA, 1996), pp. 89-135. Cambridge University Press, Cambridge (1999) · Zbl 1046.82507
[12] Grimmett G.R., Marstrand J.M.: The supercritical phase of percolation is well behaved. Proc. R. Soc. Lond. Ser. A 430(1879), 439-457 (1990) · Zbl 0711.60100 · doi:10.1098/rspa.1990.0100
[13] Grimmett Geoffrey.: Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, Berlin (1999) · Zbl 0926.60004
[14] Grimmett, G., Hiemer P.: Directed percolation and random walk. In: In and out of equilibrium (Mambucaba, 2000), volume 51 of Progress in Probability, pp. 273-297. Birkhäuser Boston, Boston (2002) · Zbl 1010.60087
[15] Hammersley J.M.: Percolation processes: Lower bounds for the critical probability. Ann. Math. Stat. 28, 790-795 (1957) · Zbl 0091.13903 · doi:10.1214/aoms/1177706894
[16] Kolton A.B., Rosso A., Giamarchi T., Krauth W.: Dynamics below the depinning threshold in disordered elastic systems. Phys. Rev. Lett. 97, 057001 (2006) · doi:10.1103/PhysRevLett.97.057001
[17] Koplik J., Levine H.: Interface moving through a random background. Phys. Rev. B 32, 280-292 (1985) · doi:10.1103/PhysRevB.32.280
[18] Kuczek T.: The central limit theorem for the right edge of supercritical oriented percolation. Ann. Probab. 17(4), 1322-1332 (1989) · Zbl 0694.60092 · doi:10.1214/aop/1176991157
[19] Le Doussal P., Wiese K.J., Chauve P.: Functional renormalization group and the field theory of disordered elastic systems. Phys. Rev. E 69, 026112 (2004) · doi:10.1103/PhysRevE.69.026112
[20] Menshikov M.V.: Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR 288(6), 1308-1311 (1986) · Zbl 0615.60096
[21] Narayan O., Fisher D.S.: Threshold critical dynamics of driven interfaces in random media. Phys. Rev. B 48, 7030-7042 (1993) · doi:10.1103/PhysRevB.48.7030
[22] Newman C. M., Schulman L. S.: One-dimensional 1/| j − i| s percolation models: the existence of a transition for s ≤ 2. Comm. Math. Phys. 104(4), 547-571 (1986) · Zbl 0604.60097 · doi:10.1007/BF01211064
[23] Pisztora A.: Surface order large deviations for Ising, Potts and percolation models. Probab. Theory Relat. Fields 104(4), 427-466 (1996) · Zbl 0842.60022 · doi:10.1007/BF01198161
[24] Popov, S., Teixeira, A.: Soft local times and decoupling of random interlacements. accepted for publication at the Journal of the European Mathematical Society (2012) · Zbl 1329.60342
[25] Sidoravicius V., Vares M.E., Centro de Estudios Avanzados Instituto Venezolano de Investigaciones Cientificas.: Interacting Particle Systems: Renormalization and Multi-scale Analysis. Asociacion Matematica Venezolana/Instituto Venezolano de Investigaciones Cientificas (2005)
[26] Sznitman Alain-Sol.: Vacant set of random interlacements and percolation. Ann. Math. (2) 171(3), 2039-2087 (2010) · Zbl 1202.60160 · doi:10.4007/annals.2010.171.2039
[27] Tang L.-H., Leschhorn H.: Pinning by directed percolation. Phys. Rev. A 45, R8312-R8309 (1992)
[28] Tavaré, S, Zeitouni, O.: Lectures on probability theory and statistics, volume 1837 of Lecture Notes in Mathematics. Lectures from the 31st Summer School on Probability Theory held in Saint-Flour, July 8-25, 2001, Edited by Jean Picard. Springer, Berlin (2004) · Zbl 0529.60099
[29] Vannimenus J., Derrida B.: A solvable model of interface depinning in random media. J. Stat. Phys. 105(1-2), 1-23 (2001) · Zbl 1046.82023 · doi:10.1023/A:1012278408260
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.