×

On a conjecture of Candelas and de la Ossa. (English) Zbl 1318.32028

Let \(X\) be a smooth projective Calabi-Yau threefold, \(Y\) be a normal Calabi-Yau variety with only ordinary double points as singularities and \( f:X\rightarrow Y\) be a small contraction morphism. If \(\mathcal{L}_{0}\) is an ample line bundle over \(Y\) and \(\alpha \) is a Kähler class on \(X\), then by a familiar theorem by Yau, there is a unique Ricci-flat Kähler metric \(g\left( t\right) =c_{1}\left( \alpha +t\left[ \pi ^{\ast }\mathcal{L} _{0}\right] \right) \,,\) \(t\in (0,1]\). Then there exists a unique singular Ricci-flat metric \(g_{Y}\) which is a smooth Kähler metric on the non-singular part \(Y_{\mathrm{reg}}\) of \(Y\), see [P. Eyssidieux et al., J. Am. Math. Soc. 22, No. 3, 607–639 (2009; Zbl 1215.32017)]. The main result states that the metric completion of \(\left( Y_{\mathrm{reg}},g_{Y}\right) \) is a metric space with intrinsic metric \(d_{Y} \) homeomorphic to the projective variety \(Y\) itself, that is, the metric completion of \(\left( Y_{\mathrm{reg}},g_{Y}\right) \) is \(\left( Y,d_{Y}\right) \). In addition, the author proves that \(\left( X,g\left( t\right) \right) \) Gromov-Hausdorff converges to \(\left( Y,d_{Y}\right) \) as \(t\rightarrow 0+\). As a corollary (see Corollary 1.2), the author proves a conjecture of P. Candelas and X. de la Ossa [“Comments on conifolds”, Nuclear Phys. B 342 , no. 1, 246–268 (1990)].

MSC:

32Q25 Calabi-Yau theory (complex-analytic aspects)
53C55 Global differential geometry of Hermitian and Kählerian manifolds
57R22 Topology of vector bundles and fiber bundles
32Q15 Kähler manifolds

Citations:

Zbl 1215.32017

References:

[1] Avram A., Candelas P., Jančić D., Mandelberg M.: On the connectedness of the moduli space of Calabi-Yau manifolds. Nucl. Phys. B 465(3), 458-472 (1996) · Zbl 0896.14027 · doi:10.1016/0550-3213(96)00058-2
[2] Calabi, E.: Métriques Kählériennes et fibrés holomorphes. Annales scientifiques de l’fÉ.N.S. 4e série, tome 12(2), 269-294 (1979) · Zbl 0431.53056
[3] Candelas P., de la Ossa X.C.: Comments on conifolds. Nucl. Phys. B 342(1), 246-268 (1990) · doi:10.1016/0550-3213(90)90577-Z
[4] Candelas P., Green P.S., Hübsch T.: Rolling among Calabi-Yau vacua. Nucl. Phys. B 330, 49-102 (1990) · Zbl 0985.32502 · doi:10.1016/0550-3213(90)90302-T
[5] Cheeger, J.: Degeneration of Einstein metrics and metrics with special holonomy. In: Surveys in Differential Geometry, vol. VIII, pp. 29-73 · Zbl 1053.53028
[6] Cheeger J., Colding T.H.: On the structure of space with Ricci curvature bounded below I. J. Differ. Geom. 46, 406-480 (1997) · Zbl 0902.53034
[7] Cheeger J., Colding T.H.: On the structure of space with Ricci curvature bounded below II. J. Differ. Geom. 52, 13-35 (1999) · Zbl 1027.53042
[8] Cheeger J., Colding T.H., Tian G.: On the singularities of spaces with bounded Ricci curvature. Geom. Funct. Anal. 12, 873-914 (2002) · Zbl 1030.53046 · doi:10.1007/PL00012649
[9] Clemens C.H.: Double solids. Adv. Math. 47, 107-230 (1983) · Zbl 0509.14045 · doi:10.1016/0001-8708(83)90025-7
[10] Enders J., Müller R., Topping P.: On type I singularities in Ricci flow. Commun. Anal. Geom. 19(5), 905-922 (2011) · Zbl 1244.53074 · doi:10.4310/CAG.2011.v19.n5.a4
[11] Eyssidieux P., Guedj V., Zeriahi A.: Singular Kähler-Einstein metrics. J. Am. Math. Soc. 22, 607-639 (2009) · Zbl 1215.32017 · doi:10.1090/S0894-0347-09-00629-8
[12] Friedman R.: Simultaneous resolution of threefold double points. Math. Ann. 247, 671-689 (1986) · Zbl 0576.14013 · doi:10.1007/BF01458602
[13] Fu J., Li J., Yau S.T.: Constructing balanced metrics on some families of non-Kähler Calabi-Yau threefolds. J. Differ. Geom. 90, 81-129 (2012) · Zbl 1264.32020
[14] Greene B., Morrison D.R., Strominger A.: Black hole condensation and the unification of string vacua. Nucl. Phys. B 451, 109-120 (1995) · Zbl 0908.53041 · doi:10.1016/0550-3213(95)00371-X
[15] Gross M.: Primitive Calabi-Yau threefolds. J. Diff. Geom. 45, 288-318 (1997) · Zbl 0874.32010
[16] Gross, M.: Connecting the web: a prognosis. In: Mirror Symmetry III. AMS/IP Studies in Advanced Mathematics, vol. 10, pp. 157-169. American Mathematical Society, Providence (1999) · Zbl 0928.32009
[17] Gross M., Wilson P.M.H.: Large complex structure limits of K3 surfaces. J. Differ. Geom. 55, 475-546 (2000) · Zbl 1027.32021
[18] Hamilton R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255-306 (1982) · Zbl 0504.53034
[19] Hirzebruch, F.: Some examples of threefolds with trivial canonical bundle. In: Collected Papers, vol. II, pp. 757-770 Springer, Berlin (1987) · Zbl 0913.35043
[20] Kołodziej S.: The complex Monge-Ampère equation. Acta Math. 180(1), 69-117 (1998) · Zbl 0913.35043 · doi:10.1007/BF02392879
[21] Kołodziej, S.: The complex Monge-Ampère equation and pluripotential theory. Mem. Am. Math. Soc. 178(840), x+64 (2005) · Zbl 1084.32027
[22] Li, C.: On rotationally symmetric Kähler-Ricci solitons. preprint. arXiv:1004.4049
[23] Phong, D.H., Song, J., Sturm, J.: Complex Monge-Ampère equations, lecture notes · Zbl 1382.32023
[24] Phong, D.H., Sturm, J.: Lectures on Stability and Constant Scalar Curvature. Current Developments in Mathematics, vol. 2007, pp. 101-176. International Press, Somerville (2009) · Zbl 1188.53081
[25] Phong D.H., Sturm J.: The Dirichlet problem for degenerate complex Monge-Ampère equations. Commun. Anal. Geom. 18(1), 145-170 (2010) · Zbl 1222.32044 · doi:10.4310/CAG.2010.v18.n1.a6
[26] Reid M.: The moduli space of 3-folds with K = 0 may nevertheless be irreducible. Math. Ann. 287, 329-334 (1987) · Zbl 0649.14021 · doi:10.1007/BF01458074
[27] Rong X., Zhang Y.: Continuity of extremal transitions and flops for Calabi-Yau manifolds. J. Differ. Geom. 82(2), 233-269 (2011) · Zbl 1264.32021
[28] Rossi M.: Geometric transitions. J. Geom. Phys. 56(9), 1940-1983 (2006) · Zbl 1106.32019 · doi:10.1016/j.geomphys.2005.09.005
[29] Ruan W., Zhang Y.: Convergence of Calabi-Yau manifolds. Adv. Math. 228(3), 1543-1589 (2011) · Zbl 1232.32012 · doi:10.1016/j.aim.2011.06.023
[30] Song, J.: Canonical surgery of high codimension by the Kähler-Ricci flow (in preparation) · Zbl 1266.53063
[31] Song J., Tian G.: The Kähler-Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170(3), 609-653 (2007) · Zbl 1134.53040 · doi:10.1007/s00222-007-0076-8
[32] Song J., Tian G.: Canonical measures and Kähler-Ricci flow. J. Am. Math. Soc. 25, 303-353 (2012) · Zbl 1239.53086 · doi:10.1090/S0894-0347-2011-00717-0
[33] Song, J., Tian, G.: The Kähler-Ricci flow through singularities. arXiv:0909.4898 · Zbl 1440.53116
[34] Song J., Weinkove B.: The Kähler-Ricci flow on Hirzebruch surfaces. J. Reine Angew. Math. 659, 141-168 (2011) · Zbl 1252.53080
[35] Song J., Weinkove B.: Contracting exceptional divisors by the Kähler-Ricci flow. Duke Math. J. 162(2), 367-415 (2013) · Zbl 1266.53063 · doi:10.1215/00127094-1962881
[36] Song, J., Weinkove, B.: Contracting exceptional divisors by the Kähler-Ricci flow II. arXiv:1102.1759 · Zbl 1301.53066
[37] Song J., Yuan Y.: Metric flips with Calabi ansatz. Geom. Funct. Anal. 22, 240-265 (2012) · Zbl 1248.53057 · doi:10.1007/s00039-012-0151-1
[38] Strominger A.: Massless black holes and conifolds in string theory. Nucl. Phys. B 451, 97-109 (1995) · Zbl 0925.83071 · doi:10.1016/0550-3213(95)00287-3
[39] Tian, G.: Smoothness of the universal deformation space of compact CalabiYau manifolds and its Weil-Petersson metric. In: Yau, S.-T. (ed.) Mathematical Aspects of String Theory, pp. 629-646. World Scientific, Singapore (1987) · Zbl 0908.53041
[40] Tian, G.: Smoothing threefold with trivial canonical bundle and ordinary double points. In: Essays on Mirror Manifolds, pp. 458-479. International Press, Hong Kong (1992) · Zbl 0829.32012
[41] Tosatti V.: Limits of Calabi-Yau metrics when the Kähler class degenerates. J. Eur. Math. Soc. 11, 744-776 (2009) · Zbl 1177.32015
[42] Tosatti V.: Adiabatic limits of Ricci-flat Kähler metrics. J. Differ. Geom. 84(2), 427-453 (2010) · Zbl 1208.32024
[43] Tsuji H.: Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281, 123-133 (1988) · Zbl 0631.53051 · doi:10.1007/BF01449219
[44] Yau S.T.: On the Ricci curvature of a compact Kähler manifold and complex Monge-Ampère equation I. Commun. Pure Appl. Math. 31, 339-411 (1978) · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
[45] Yau S.T.: A general Schwarz lemma for Kähler manifolds. Am. J. Math. 100, 197-204 (1978) · Zbl 0424.53040 · doi:10.2307/2373880
[46] Zhang, Y.: Convergence of Kähler manifolds and calibrated fibrations. PhD thesis, Nankai Institute of Mathematics (2006)
[47] Zhang, Z.: On degenerate Monge-Ampère equations over closed Kähler manifolds. Int. Math. Res. Not. 18pp (2006). Art.ID 63640. · Zbl 1112.32021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.