×

Brownian net with killing. (English) Zbl 1327.60192

Summary: Motivated by its relevance for the study of perturbations of one-dimensional voter models, including stochastic Potts models at low temperature, we consider diffusively rescaled coalescing random walks with branching and killing. Our main result is convergence to a new continuum process, in which the random space-time paths of the Sun-Swart Brownian net are terminated at a Poisson cloud of killing points. We also prove existence of a percolation transition as the killing rate varies. Key issues for convergence are the relations of the discrete model killing points and their intensity measure to the continuum counterparts: these convergence issues make the addition of killing considerably more difficult for the Brownian net than for the Brownian web.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G60 Random fields
60J65 Brownian motion
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60G50 Sums of independent random variables; random walks

References:

[2] Cox, J. T.; Durrett, R.; Perkins, E., Voter model perturbations and reaction diffusion equations, Astérisque, 349 (2013) · Zbl 1277.60004
[3] Fontes, L. R.G.; Isopi, M.; Newman, C. M.; Ravishankar, K., The Brownian web: characterization and convergence, Ann. Probab., 32, 2857-2883 (2004) · Zbl 1105.60075
[4] Fontes, L. R.G.; Isopi, M.; Newman, C. M.; Ravishankar, K., Coarsening, nucleation, and the marked Brownian web, Ann. Inst. Henri Poincaré Probab. Stat., 42, 37-60 (2006) · Zbl 1087.60072
[5] Karr, A. F., (Point Processes and their Statistical Inference. Point Processes and their Statistical Inference, Probability: Pure and Applied, vol. 7 (1991), Marcel Dekker Inc.: Marcel Dekker Inc. New York) · Zbl 0733.62088
[6] Mohylevskyy, Y.; Newman, C. M.; Ravishankar, K., Ergodicity and percolation for variants of one-dimensional voter models, ALEA Lat. Am. J. Probab. Math. Stat., 10, 485-504 (2013) · Zbl 1277.60180
[7] Molofsky, J.; Durrett, R.; Dushoff, J.; Griffeath, D.; Levin, S., Local frequency dependence and global coexistence, Theor. Popul. Biol., 55, 270-282 (1999) · Zbl 0951.92032
[8] Neuhauser, C.; Pacala, S. W., An explicitly spatial version of the Lotka-Volterra model with interspecific competition, Ann. Appl. Probab., 9, 1226-1259 (2000) · Zbl 0948.92022
[9] Newman, C. M.; Ravishankar, K.; Schertzer, E., Marking the \((1, 2)\) points of the Brownian web and applications, Ann. Inst. Henri Poincaré, 46, 537-574 (2010) · Zbl 1198.60044
[11] Ohtsuki, H.; Hauert, H. C.; Lieberman, E.; Nowak, M. A., A simple rule for the evolution of cooperation on graphs and social networks, Nature, 441, 502-505 (2006)
[12] Schertzer, E.; Sun, R.; Swart, J. M., Special points of the Brownian net, Electron. J. Probab., 14, 805-854 (2009) · Zbl 1187.82081
[13] Schertzer, E.; Sun, R.; Swart, J. M., Stochastic flows in the Brownian web and net, Mem. Amer. Math. Soc., 227 (2014), in press · Zbl 1303.82028
[14] Soucaliuc, F.; Tóth, B.; Werner, W., Reflection and coalescence between independent one-dimensional Brownian paths, Ann. Inst. Henri Poincaré Probab. Stat., 36, 509-545 (2000) · Zbl 0968.60072
[15] Sun, R.; Swart, J. M., The Brownian net, Ann. Probab., 36, 1153-1208 (2008) · Zbl 1143.82020
[16] Tóth, B.; Werner, W., The true self-repelling motion, Probab. Theory Related Fields, 111, 375-452 (1998) · Zbl 0912.60056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.