×

An alternative subtraction scheme for next-to-leading order QCD calculations. (English) Zbl 1298.81374

Summary: We propose a new subtraction scheme for next-to-leading order QCD calculations. Our scheme is based on the momentum mapping and on the splitting functions derived in the context of an improved parton shower formulation. Compared to standard schemes, the new scheme features a significantly smaller number of subtraction terms and facilitates the matching of NLO calculations with parton showers including quantum interference. We provide formulae for the momentum mapping and the subtraction terms, and present a detailed comparison with the Catani-Seymour dipole subtraction for a variety of \(2 \to 2\) scattering processes.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81U05 \(2\)-body potential quantum scattering theory

References:

[1] Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys.G 37 (2010) 075021 [SPIRES].
[2] http://press.web.cern.ch/press/PressReleases/Releases2009/PR16.09E.html.
[3] J.R. Andersenet al., The SM and NLO multileg working group: summary report, arXiv:1003.1241 [SPIRES].
[4] http://mcfm.fnal.gov.
[5] http://nagyz.web.cern.ch/nagyz/Site/NLOJet++.html.
[6] K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun.180 (2009) 1661 [arXiv:0811.4559] [SPIRES]. · Zbl 07872407 · doi:10.1016/j.cpc.2009.03.006
[7] R.K. Ellis, W.T. Giele and G. Zanderighi, Semi-numerical evaluation of one-loop corrections, Phys. Rev.D 73 (2006) 014027 [hep-ph/0508308] [SPIRES].
[8] C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett.102 (2009) 222001 [arXiv:0902.2760] [SPIRES]. · doi:10.1103/PhysRevLett.102.222001
[9] C.F. Berger et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev.D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].
[10] T. Binoth et al., Next-to-leading order QCD corrections to \(pp \to b\bar{b}b\bar{b} + X\) at the LHC: the quark induced case, Phys. Lett.B 685 (2010) 293 [arXiv:0910.4379] [SPIRES].
[11] A. Kanaki and C.G. Papadopoulos, HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Commun.132 (2000) 306 [hep-ph/0002082] [SPIRES]. · Zbl 1031.81507 · doi:10.1016/S0010-4655(00)00151-X
[12] G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist: pp → ttbb, JHEP09 (2009) 109 [arXiv:0907.4723] [SPIRES]. · doi:10.1088/1126-6708/2009/09/109
[13] G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \(pp \to t\bar{t} + 2\) jets at next-to-leading order, Phys. Rev. Lett.104 (2010) 162002 [arXiv:1002.4009] [SPIRES]. · doi:10.1103/PhysRevLett.104.162002
[14] J. Collins, Monte-Carlo event generators at NLO, Phys. Rev.D 65 (2002) 094016 [hep-ph/0110113] [SPIRES].
[15] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [SPIRES]. · doi:10.1088/1126-6708/2002/06/029
[16] M. Krämer, 1 and D.E. Soper, Next-to-leading order QCD calculations with parton showers. I: collinear singularities, Phys. Rev.D 69 (2004) 054019 [hep-ph/0306222] [SPIRES].
[17] D.E. Soper, Next-to-leading order QCD calculations with parton showers. II: soft singularities, Phys. Rev.D 69 (2004) 054020 [hep-ph/0306268] [SPIRES].
[18] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [SPIRES]. · doi:10.1088/1126-6708/2004/11/040
[19] Z. Nagy and D.E. Soper, Matching parton showers to NLO computations, JHEP10 (2005) 024 [hep-ph/0503053] [SPIRES]. · doi:10.1088/1126-6708/2005/10/024
[20] C.W. Bauer and M.D. Schwartz, Event generation from effective field theory, Phys. Rev.D 76 (2007) 074004 [hep-ph/0607296] [SPIRES].
[21] W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev.D 78 (2008) 014026 [arXiv:0707.3652] [SPIRES].
[22] N. Lavesson and L. Lönnblad, Extending CKKW - merging to one-loop matrix elements, JHEP12 (2008) 070 [arXiv:0811.2912] [SPIRES]. · doi:10.1088/1126-6708/2008/12/070
[23] P. Torrielli and S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP04 (2010) 110 [arXiv:1002.4293] [SPIRES]. · Zbl 1272.81198 · doi:10.1007/JHEP04(2010)110
[24] S. Frixione et al., NLO QCD corrections in Herwig++ with MC@NLO, arXiv:1010.0568 [SPIRES]. · Zbl 1214.81299
[25] S. Frixione et al., The MCaNLO 4.0 event generator, arXiv:1010.0819 [SPIRES].
[26] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [SPIRES]. · doi:10.1088/1126-6708/2007/11/070
[27] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP06 (2010) 043 [arXiv:1002.2581] [SPIRES]. · Zbl 1290.81155 · doi:10.1007/JHEP06(2010)043
[28] S. Hoche et al., Automating the POWHEG method in Sherpa, arXiv:1008.5399 [SPIRES].
[29] R.K. Ellis, D.A. Ross and A.E. Terrano, The perturbative calculation of jet structure in e+e−annihilation, Nucl. Phys.B 178 (1981) 421 [SPIRES]. · doi:10.1016/0550-3213(81)90165-6
[30] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [SPIRES]. · doi:10.1016/0550-3213(96)00110-1
[31] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [hep-ph/9605323] [SPIRES]. · doi:10.1016/S0550-3213(96)00589-5
[32] S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys.B 565 (2000) 69 [hep-ph/9904440] [SPIRES]. · doi:10.1016/S0550-3213(99)00563-5
[33] S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys.B 627 (2002) 189 [hep-ph/0201036] [SPIRES]. · Zbl 0990.81140 · doi:10.1016/S0550-3213(02)00098-6
[34] S. Weinzierl, Subtraction terms for one-loop amplitudes with one unresolved parton, JHEP07 (2003) 052 [hep-ph/0306248] [SPIRES]. · doi:10.1088/1126-6708/2003/07/052
[35] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J.C 53 (2008) 501 [arXiv:0709.2881] [SPIRES]. · doi:10.1140/epjc/s10052-007-0495-0
[36] M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP08 (2009) 085 [arXiv:0905.0883] [SPIRES]. · doi:10.1088/1126-6708/2009/08/085
[37] K. Hasegawa, S. Moch and P. Uwer, AutoDipole — Automated generation of dipole subtraction terms, Comput. Phys. Commun.181 (2010) 1802 [arXiv:0911.4371] [SPIRES]. · Zbl 1219.81244 · doi:10.1016/j.cpc.2010.06.044
[38] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP10 (2009) 003 [arXiv:0908.4272] [SPIRES]. · doi:10.1088/1126-6708/2009/10/003
[39] R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework, JHEP06 (2010) 086 [arXiv:1004.2905] [SPIRES]. · Zbl 1288.81145 · doi:10.1007/JHEP06(2010)086
[40] Z. Nagy and D.E. Soper, Parton showers with quantum interference, JHEP09 (2007) 114 [arXiv:0706.0017] [SPIRES]. · doi:10.1088/1126-6708/2007/09/114
[41] Z. Nagy and D.E. Soper, Parton showers with quantum interference: leading color, spin averaged, JHEP03 (2008) 030 [arXiv:0801.1917] [SPIRES]. · doi:10.1088/1126-6708/2008/03/030
[42] Z. Nagy and D.E. Soper, Parton showers with quantum interference: leading color, with spin, JHEP07 (2008) 025 [arXiv:0805.0216] [SPIRES]. · doi:10.1088/1126-6708/2008/07/025
[43] M. Krämer, 1, S. Mrenna and D.E. Soper, Next-to-leading order QCD jet production with parton showers and hadronization, Phys. Rev.D 73 (2006) 014022 [hep-ph/0509127] [SPIRES].
[44] T. Robens and C.H. Chung, Alternative subtraction scheme using Nagy Soper dipoles, PoS(RADCOR2009)072.
[45] G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys.B 126 (1977) 298 [SPIRES]. · doi:10.1016/0550-3213(77)90384-4
[46] A. Bassetto, M. Ciafaloni and G. Marchesini, Jet structure and infrared sensitive quantities in perturbative QCD, Phys. Rept.100 (1983) 201 [SPIRES]. · doi:10.1016/0370-1573(83)90083-2
[47] Y.L. Dokshitzer et al., Basics of perturbative QCD. Ed. Frontieres, France (1991), p. 274.
[48] G. Somogyi and Z. Trocsanyi, A new subtraction scheme for computing QCD jet cross sections at next-to-leading order accuracy, hep-ph/0609041 [SPIRES]. · Zbl 1214.81293
[49] T. Huber and D. Maître, HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun.175 (2006) 122 [hep-ph/0507094] [SPIRES]. · Zbl 1196.68326 · doi:10.1016/j.cpc.2006.01.007
[50] T. Huber and D. Maître, HypExp 2, expanding hypergeometric functions about half-integer parameters, Comput. Phys. Commun.178 (2008) 755 [arXiv:0708.2443] [SPIRES]. · Zbl 1196.81024 · doi:10.1016/j.cpc.2007.12.008
[51] J. Kalinowski, W. Kilian, J. Reuter, T. Robens and K. Rolbiecki, Pinning down the invisible sneutrino, JHEP10 (2008) 090 [arXiv:0809.3997] [SPIRES]. · doi:10.1088/1126-6708/2008/10/090
[52] T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun.168 (2005) 78 [hep-ph/0404043] [SPIRES]. · Zbl 1196.65052 · doi:10.1016/j.cpc.2005.01.010
[53] R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.8 (1996) 1.
[54] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP07 (2002) 012 [hep-ph/0201195] [SPIRES]. · doi:10.1088/1126-6708/2002/07/012
[55] J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys.B 106 (1976) 292 [SPIRES].
[56] M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys.30 (1979) 711 [SPIRES].
[57] A.I. Vainshtein, V.I. Zakharov and M.A. Shifman, Higgs particles, Sov. Phys. Usp.23 (1980) 429. · doi:10.1070/PU1980v023n08ABEH005019
[58] M.B. Voloshin, Once again about the role of gluonic mechanism in interaction of light Higgs boson with hadrons, Sov. J. Nucl. Phys.44 (1986) 478 [SPIRES].
[59] A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett.B 264 (1991) 440 [SPIRES].
[60] S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys.B 359 (1991) 283 [SPIRES]. · doi:10.1016/0550-3213(91)90061-2
[61] G. Altarelli, A QCD primer, hep-ph/0204179 [SPIRES]. · Zbl 1079.81587
[62] R.K. Ellis, An introduction to the QCD parton model, lectures given at 1987 Theoretical Advanced Study Inst. in Elementary Particle Physics, July 5 - August 1, Santa Fe, New Mexico, U.S.A. (1987).
[63] A. Djouadi, M. Spira and P.M. Zerwas, QCD corrections to hadronic Higgs decays, Z. Phys.C 70 (1996) 427 [hep-ph/9511344] [SPIRES].
[64] T. Hahn, The formcalc homepage, http://www.feynarts.de/formcalc/.
[65] T. Ohl, Vegas revisited: adaptive Monte Carlo integration beyond factorization, Comput. Phys. Commun.120 (1999) 13 [hep-ph/9806432] [SPIRES]. · Zbl 1001.65002 · doi:10.1016/S0010-4655(99)00209-X
[66] Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev.D 68 (2003) 094002 [hep-ph/0307268] [SPIRES].
[67] M. Czakon, M. Krämer and M. Kubocz, work in progress.
[68] W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
[69] V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys.15 (1972) 438 [SPIRES].
[70] L.N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys.20 (1975) 94 [SPIRES].
[71] Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+e−annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP46 (1977) 641 [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.