×

Multiplicity of layered solutions for Allen-Cahn systems with symmetric double well potential. (English) Zbl 1301.35033

Summary: We study the existence of solutions \(u : \mathbb{R}^3 \to \mathbb{R}^2\) for the semilinear elliptic systems \[ - {\Delta} u(x, y, z) + {\nabla} W(u(x, y, z)) = 0, \eqno{(0.1)} \] where \(W : \mathbb{R}^2 \to \mathbb{R}\) is a double well symmetric potential. We use variational methods to show, under generic non-degenerate properties of the set of one dimensional heteroclinic connections between the two minima \(\mathbf{a}_\pm\) of \(W\), that (0.1) has infinitely many geometrically distinct solutions \(u \in C^2(\mathbb{R}^3, \mathbb{R}^2)\) which satisfy \(u(x, y, z) \to \mathbf{a}_\pm\) as \(x \to \pm \infty\) uniformly with respect to \((y, z) \in \mathbb{R}^2\) and which exhibit dihedral symmetries with respect to the variables \( y\) and \( z\). We also characterize the asymptotic behavior of these solutions as \(|(y, z) | \to + \infty\).

MSC:

35J50 Variational methods for elliptic systems
35J61 Semilinear elliptic equations
35J60 Nonlinear elliptic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35J20 Variational methods for second-order elliptic equations
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations

References:

[1] Alama, S.; Bronsard, L.; Gui, C., Stationary layered solutions in \(R^2\) for an Allen-Cahn system with multiple well potential, Calc. Var. Partial Differential Equations, 5, 359-390 (1997) · Zbl 0883.35036
[2] Alessio, F., Stationary layered solutions for a system of Allen-Cahn type equations, Indiana Univ. Math. J., 62, 5, 1535-1564 (2013) · Zbl 1300.35035
[3] Alessio, F.; Calamai, A.; Montecchiari, P., Saddle type solutions to a class of semilinear elliptic equations, Adv. Differential Equations, 12, 4, 361-380 (2007) · Zbl 1193.35058
[4] Alessio, F.; Jeanjean, L.; Montecchiari, P., Stationary layered solutions in \(R^2\) for a class of non autonomous Allen-Cahn equations, Calc. Var. Partial Differential Equations, 11, 2, 177-202 (2000) · Zbl 0965.35050
[5] Alessio, F.; Montecchiari, P., Entire solutions in \(R^2\) for a class of Allen-Cahn equations, ESAIM Control Optim. Calc. Var., 11, 633-672 (2005) · Zbl 1084.35020
[6] Alessio, F.; Montecchiari, P., Multiplicity of entire solutions for a class of almost periodic Allen-Cahn type equations, Adv. Nonlinear Stud., 5, 515-549 (2005) · Zbl 1284.35170
[7] Alessio, F.; Montecchiari, P., Brake orbits type solutions to some class of semilinear elliptic equations, Calc. Var. Partial Differential Equations, 30, 51-83 (2007) · Zbl 1153.35025
[8] Alessio, F.; Montecchiari, P., Layered solutions with multiple asymptotes for non autonomous Allen-Cahn equations in \(R^3\), Calc. Var. Partial Differential Equations, 46, 591-622 (2013) · Zbl 1266.35075
[9] Alessio, F.; Montecchiari, P., Saddle solutions for bistable symmetric semilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 20, 3, 1317-1346 (2013) · Zbl 1273.35133
[10] Alessio, F.; Montecchiari, P., An energy constrained method for the existence of layered type solutions of NLS equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31, 4, 725-749 (2014) · Zbl 1444.35057
[11] Alikakos, N. D.; Betelú, S. I.; Chen, X., Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energy densities, European J. Appl. Math., 17, 525-556 (2006) · Zbl 1165.35363
[12] Alikakos, N. D.; Fusco, G., On the connection problem for potentials with several global minima, Indiana Univ. Math. J., 57, 4, 1871-1906 (2008) · Zbl 1162.65060
[13] Alikakos, N. D.; Fusco, G., On an elliptic system with symmetric potential possessing two global minima, Bull. Greek Math. Soc. (2014), in press
[14] Alikakos, N. D.; Fusco, G., Entire solutions to equivariant elliptic systems with variational structure, Arch. Ration. Mech. Anal., 202, 567-597 (2011) · Zbl 1266.35055
[15] Ambrosio, L.; Cabre, X., Entire solutions of semilinear elliptic equations in \(R^3\) and a conjecture of De Giorgi, J. Amer. Math. Soc., 13, 4, 725-739 (2000) · Zbl 0968.35041
[16] Barlow, M. T.; Bass, R. F.; Gui, C., The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math., 53, 8, 1007-1038 (2000) · Zbl 1072.35526
[17] Berestycki, H.; Hamel, F.; Monneau, R., One-dimensional symmetry for some bounded entire solutions of some elliptic equations, Duke Math. J., 103, 3, 375-396 (2000) · Zbl 0954.35056
[18] Brezis, H., Analyse Fonctionnelle, Théorie et Applications (1983), Dunod · Zbl 0511.46001
[19] Bronsard, L.; Reitich, F., On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Arch. Ration. Mech. Anal., 124, 355-379 (1993) · Zbl 0785.76085
[20] De Giorgi, E., Convergence problems for functionals and operators, (De Giorgi, E.; etal., Proc. Int. Meeting on Recent Methods in Nonlinear Analysis. Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, Rome (1978)) · Zbl 0405.49001
[21] del Pino, M.; Kowalczyk, M.; Wei, J., A counterexample to a conjecture by De Giorgi in large dimensions, C. R. Math. Acad. Sci. Paris, Ser. I, 346, 1261-1266 (2008) · Zbl 1161.35023
[22] del Pino, M.; Kowalczyk, M.; Wei, J., On De Giorgi conjecture in dimension \(N \geq 9\), Ann. of Math., 174, 3, 1485-1569 (2011) · Zbl 1238.35019
[23] del Pino, M., New entire solutions to some classical semilinear elliptic problems, (Proceedings of the International Congress of Mathematicians. Proceedings of the International Congress of Mathematicians, ICM (2010))
[24] Farina, A., Symmetry for solutions of semilinear elliptic equations in \(R^N\) and related conjectures, Ric. Mat., 48, 129-154 (1999), (in memory of Ennio De Giorgi) · Zbl 0940.35084
[25] Farina, A.; Valdinoci, E., The state of the art for a conjecture of De Giorgi and related problems, (Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions (2009), World Sci. Publ.: World Sci. Publ. Hackensack, NJ), 74-96 · Zbl 1183.35137
[26] Ghoussoub, N.; Gui, C., On a conjecture of De Giorgi and some related problems, Math. Ann., 311, 481-491 (1998) · Zbl 0918.35046
[27] Gui, C.; Schatzman, M., Symmetric quadruple phase transitions, Indiana Univ. Math. J., 57, 2, 781-836 (2008) · Zbl 1185.35080
[28] Rabinowitz, P. H., On a class of reversible elliptic systems, Netw. Heterog. Media, 7, 4, 927-939 (2012) · Zbl 1266.35046
[29] Rabinowitz, Paul H., On a class of reversible elliptic systems, Adv. Nonlinear Stud., 12, 4, 851-875 (2012) · Zbl 1266.35049
[30] Rabinowitz, P. H.; Stredulinsky, E., Extensions of Moser Bangert Theory: Locally Minimal Solutions, Progr. Nonlinear Differential Equations Appl., vol. 81 (2011), Birkhäuser · Zbl 1234.35005
[31] Rubinstein, J.; Sternberg, P.; Keller, J., Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math., 48, 1722-1733 (1989) · Zbl 0702.35128
[32] Savin, O., Regularity of flat level sets in phase transition, Ann. of Math., 169, 1, 41-78 (2009) · Zbl 1180.35499
[33] Schatzman, M., Asymmetric heteroclinic double layers, ESAIM Control Optim. Calc. Var., 8, 965-1005 (2002) · Zbl 1092.35030
[34] Sternberg, P., Vector-valued local minimizers of non-convex variational problems, Rocky Mountain J. Math., 21, 2, 799-807 (1991) · Zbl 0737.49009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.