×

Interpolation of functionals of stochastic sequences with stationary increments. (English. Ukrainian original) Zbl 1343.60039

Theory Probab. Math. Stat. 87, 117-133 (2013); translation from Teor. Jmovirn. Mat. Stat. 87, 105-119 (2012).
Summary: The problem of optimal estimation of a linear functional \[ A_N\xi=\sum\limits_{k=0}^N a(k)\xi (k), \] that depends on unknown values of a stochastic sequence \(\{\xi (m),m\in \mathbb{Z}\}\) with stationary increments of order \(n\), by observations of the sequence at points \[ m\in \mathbb{Z}\setminus \{0,1,\dots ,N\} \] is considered. Formulas for calculating the mean square error and spectral characteristic of the optimal linear estimator of the above functional are derived in the case where the spectral density is known. In the case where the spectral density is not known, but a set of admissible spectral densities is given, the minimax-robust approach is applied to the problem of optimal estimation of the linear functional. Formulas that determine the least favorable spectral densities and the minimax spectral characteristics are proposed for a given set of admissible spectral densities.

MSC:

60G10 Stationary stochastic processes
62M09 Non-Markovian processes: estimation
60G25 Prediction theory (aspects of stochastic processes)
60G35 Signal detection and filtering (aspects of stochastic processes)
62M20 Inference from stochastic processes and prediction
93E10 Estimation and detection in stochastic control theory
93E11 Filtering in stochastic control theory
Full Text: DOI

References:

[1] Ulf Grenander, A prediction problem in game theory, Ark Mat. 3 (1957), 371 – 379. · Zbl 0082.13302 · doi:10.1007/BF02589429
[2] Jürgen Franke, Minimax-robust prediction of discrete time series, Z. Wahrsch. Verw. Gebiete 68 (1985), no. 3, 337 – 364. · Zbl 0537.60034 · doi:10.1007/BF00532645
[3] Jürgen Franke and H. Vincent Poor, Minimax-robust filtering and finite-length robust predictors, Robust and nonlinear time series analysis (Heidelberg, 1983) Lect. Notes Stat., vol. 26, Springer, New York, 1984, pp. 87 – 126. · Zbl 0569.62083 · doi:10.1007/978-1-4615-7821-5_6
[4] Kari Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 1947 (1947), no. 37, 79 (German). · Zbl 0030.16502
[5] Теория вероятностей и математическая статистика. Избранные труды, ”Наука”, Мосцощ, 1986 (Руссиан). Едитед бы Ю. В. Прохоров; Щитх цомментариес. · Zbl 0595.60001
[6] M. Luz, Wiener-Kolmogorov filters for prediction of stationary processes, Visnyk Kyiv Univ. Ser. Mat. Meh., 25 (2011), 26-29. (Ukrainian) · Zbl 1249.60069
[7] M. P. Moklyachuk, Stochastic autoregressive sequences and minimax interpolation, Teor. Ĭmovīr. Mat. Stat. 48 (1993), 135 – 146 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 48 (1994), 95 – 103. · Zbl 0840.60032
[8] M. P. Moklyachuk, Robust procedures in time series analysis, Theory Stoch. Process. 6(22) (2000), no. 3-4, 127-147. · Zbl 0967.62074
[9] M. P. Moklyachuk, Game theory and convex optimization methods in robust estimation problems, Theory Stoch. Process. 7(23) (2001), no. 1-2, 253-264. · Zbl 0973.62083
[10] M. P. Moklyachuk, Robust Estimators of Functionals of Stochastic Processes, Kyiv University Publishing House, Kyiv, 2008. (Ukrainian) · Zbl 1249.62007
[11] M. S. Pinsker and A. M. Yaglom, On linear extrapolation of random processes with stationary \?th increments, Doklady Akad. Nauk SSSR (N.S.) 94 (1954), 385 – 388 (Russian). · Zbl 0055.36802
[12] M. S. Pinsker, The theory of curves in Hilbert space with stationary \?th increments, Izv. Akad. Nauk SSSR. Ser. Mat. 19 (1955), 319 – 344 (Russian).
[13] Необходимые условия ѐкстремума, Оптимизация и Исследование Операций. [Оптимизатион анд Оператионс Ресеарч], ”Наука”, Мосцощ, 1982 (Руссиан).
[14] Стационарные случайные процессы, 2нд ед., Теория Вероятностей и Математическая Статистика [Пробабилиты Тхеоры анд Матхематицал Статистицс], вол. 42, ”Наука”, Мосцощ, 1990 (Руссиан). · Zbl 0656.60001
[15] Norbert Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series. With Engineering Applications, The Technology Press of the Massachusetts Institute of Technology, Cambridge, Mass; John Wiley & Sons, Inc., New York, N. Y.; Chapman & Hall, Ltd., London, 1949. · Zbl 0036.09705
[16] A. M. Yaglom, Correlation theory of stationary and related random functions. Vol. I, Springer Series in Statistics, Springer-Verlag, New York, 1987. Basic results. · Zbl 0685.62078
[17] A. M. Yaglom, Correlation theory of stationary and related random functions. Vol. II, Springer Series in Statistics, Springer-Verlag, New York, 1987. Supplementary notes and references. · Zbl 0685.62078
[18] A. M. Yaglom, Correlation theory of processes with random stationary \?th increments, Mat. Sb. N.S. 37(79) (1955), 141 – 196 (Russian). · Zbl 0080.34903
[19] A. M. Yaglom, Certain types of random fields in \?-dimensional space similar to stationary stochastic processes, Teor. Veroyatnost. i Primenen 2 (1957), 292 – 338 (Russian, with English summary). · Zbl 0084.12804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.