×

Singularity and fine fractal properties of a certain class of infinite Bernoulli convolutions with an essential intersection. (English. Ukrainian original) Zbl 1329.60107

Theory Probab. Math. Stat. 87, 99-115 (2013); translation from Teor. Jmovirn. Mat. Stat. 87, 89-104 (2012).
Summary: We prove that the probability distribution of a random variable \(\xi\) represented in the form of an infinite series \[ \xi =\sum\limits_{k=1}^\infty\xi_k a_k \] is singular, where \(\xi_k\) are independent Bernoulli random variables and where the sequence \(\{ a_k\}\) is such that the series \(\sum^\infty_{k=1}a_k\) converges, \(a_k\geq 0\) for all \(k\geq 1\), and, for an arbitrary \(k\in\mathbb N\), there exists \(s_k\in\mathbb N\cup\{ 0\}\) for which \(s_k>0\) for infinitely many indices \(k\) and \(a_k=a_{k+1}=\cdots =a_{k+s_k}\geq r_{r_k+s_k}\), where \(r_k\) is the tail of the series, namely \[ r_k=\sum\limits_{i=k+1}^\infty a_i. \] Under these assumptions, it is shown that the corresponding distribution is a Bernoulli convolution with essential intersections (that is, almost all with respect to the Hausdorff-Besicovitch dimension points of the spectrum have continuum many different expansions of the form \(\sum^\infty_{k=1}\omega_ka_k\), where \(\omega_k\in\{ 0,1\}\)). Our main attention is paid to the studies of fractal properties of singularly continuous probability measures \(\mu_\xi\). In particular, fractal properties of the spectra (minimal closed supports of the above measures) and minimal in the sense of the Hausdorff-Besicovitch dimension dimensional supports of such probability distributions are studied in detail.

MSC:

60G30 Continuity and singularity of induced measures
28A80 Fractals
28A78 Hausdorff and packing measures
Full Text: DOI

References:

[1] Sergio Albeverio and Grygoriy Torbin, On fine fractal properties of generalized infinite Bernoulli convolutions, Bull. Sci. Math. 132 (2008), no. 8, 711 – 727 (English, with English and French summaries). · Zbl 1162.28002 · doi:10.1016/j.bulsci.2008.03.002
[2] S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, and G. Torbin, On fine structure of singularly continuous probability measures and random variables with independent \?-symbols, Methods Funct. Anal. Topology 17 (2011), no. 2, 97 – 111. · Zbl 1240.28019
[3] S. Albeverio and G. Torbin, Image measures of infinite product measures and generalized Bernoulli convolutions, Proceedings of Dragomanov National Pedagogical University, ser. 1, Physics and Mathematics 5 (2004), 248-264.
[4] Sergio Albeverio and Grygoriy Torbin, Fractal properties of singular probability distributions with independent \?*-digits, Bull. Sci. Math. 129 (2005), no. 4, 356 – 367 (English, with English and French summaries). · Zbl 1082.11049 · doi:10.1016/j.bulsci.2004.12.001
[5] J. C. Alexander and Don Zagier, The entropy of a certain infinitely convolved Bernoulli measure, J. London Math. Soc. (2) 44 (1991), no. 1, 121 – 134. · Zbl 0691.58024 · doi:10.1112/jlms/s2-44.1.121
[6] Patrick Billingsley, Hausdorff dimension in probability theory. II, Illinois J. Math. 5 (1961), 291 – 298.
[7] Michael J. P. Cooper, Dimension, measure and infinite Bernoulli convolutions, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 1, 135 – 149. · Zbl 0912.28006 · doi:10.1017/S0305004197002442
[8] Paul Erdös, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974 – 976. · JFM 65.1308.01 · doi:10.2307/2371641
[9] Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. · Zbl 0689.28003
[10] Adriano M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409 – 432. · Zbl 0103.36502
[11] Ya. V. Goncharenko, M. V. Prats\(^{\prime}\)ovitiĭ, and G. M. Torbin, Fractal properties of some Bernoulli convolutions, Teor. Ĭmovīr. Mat. Stat. 79 (2008), 34 – 49 (Ukrainian, with Russian summary); English transl., Theory Probab. Math. Statist. 79 (2009), 39 – 55. · Zbl 1224.60082
[12] Børge Jessen and Aurel Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), no. 1, 48 – 88. · Zbl 0014.15401
[13] P. Lévy, Sur les séries dont les termes sont des variables indépendantes, Studia Math. 3 (1931), 119-155. · JFM 57.0616.01
[14] Yuval Peres, Wilhelm Schlag, and Boris Solomyak, Sixty years of Bernoulli convolutions, Fractal geometry and stochastics, II (Greifswald/Koserow, 1998) Progr. Probab., vol. 46, Birkhäuser, Basel, 2000, pp. 39 – 65. · Zbl 0961.42006
[15] Yuval Peres and Boris Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof, Math. Res. Lett. 3 (1996), no. 2, 231 – 239. · Zbl 0867.28001 · doi:10.4310/MRL.1996.v3.n2.a8
[16] Boris Solomyak, On the random series \sum \pm \?\(^{n}\) (an Erdős problem), Ann. of Math. (2) 142 (1995), no. 3, 611 – 625. · Zbl 0837.28007 · doi:10.2307/2118556
[17] M. V. Pratsevytyĭ and G. M. Torbin, A certain class of Jessen-Wintner type random variables, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (1998), no. 4, 48-54. (Ukrainian) · Zbl 0940.60041
[18] M. V. Pratsevytyĭ, Fractal Approach in Studies of Singular Distributions, Dragomanov National Pedagogical University Publishing House, Kyiv, 1998. (Ukrainian)
[19] G. M. Torbīn, Multifractal analysis of singularly continuous probability measures, Ukraïn. Mat. Zh. 57 (2005), no. 5, 706 – 721 (Ukrainian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 57 (2005), no. 5, 837 – 857. · Zbl 1099.28006 · doi:10.1007/s11253-005-0233-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.