×

Classical BV theories on manifolds with boundary. (English) Zbl 1302.81141

Between 1977 and 1983 Batalin and Vilkovisky published a number of papers in which they studied gauge algebra in general and the quantization of theories with linearly dependent generators. The BV approach generalizes the Faddeev-Popov and the BRST methods. In their paper, Cattaneo et.al. reformulate the classical BV framework for gauge theories on spacetime manifolds with boundaries. They consider it as a first step towards a perturbative quantization of classical BV theories and so the ultimate goal is to construct topological invariants in the context of perturbation theory. Topological field theories such as the Chern-Simons theory and similar models are very particular: Feynman diagrams have no ultraviolet divergencies and the partition function is independent of the metric and therefore a topological invariant. Developing the perturbative Chern-Simons quantization for bounded manifolds is one of the main motivation for the project that Callaneo et.al. started in the present paper. Section 3 is the central part of this paper. Here they formulate the BV framework for gauge theories and propose an analogue of the classical master equation for bounded spacetime manifolds. They define moduli spaces and address the problem of gluing two manifolds together.

MSC:

81T20 Quantum field theory on curved space or space-time backgrounds
81T13 Yang-Mills and other gauge theories in quantum field theory
81T45 Topological field theories in quantum mechanics
58J28 Eta-invariants, Chern-Simons invariants
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T70 Quantization in field theory; cohomological methods

References:

[1] Aleksandrov M., Kontsevich M., Schwarz A., Zaboronsky O.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12, 1405-1430 (1997) · Zbl 1073.81655 · doi:10.1142/S0217751X97001031
[2] Alekseev, A., Mnev, P.: One-dimensional Chern-Simons theory. Commun. Math. Phys. 307(1), 185-227 (2011). arXiv:1005.2111 · Zbl 1235.81112
[3] Andersen, J.E.: The Witten-Reshetikhin-Turaev invariants of finite order mapping tori I. J. Reine Angew. Math, 2013(681) (2013). arXiv:1104.5576 · Zbl 1305.57023
[4] Atiyah, M.: New invariants of three and four manifolds. Proc. Symp. Pure Math. (AMS), 48 (1988) · Zbl 0667.57018
[5] Axelrod, S., Singer, I. M.: Chern-Simons perturbation theory. I. In: Perspectives in Mathematical Physics, pp. 17-49, Conference Proceedings. Lecture Notes in Mathematical Physics III, International Press, Cambridge, MA (1994); Chern-Simons perturbation theory. II. J. Differ. Geom. 39(1), 173-213 (1994) · Zbl 0889.53053
[6] Baez J., Dolan J.: Higher-dimensional Algebra and Topological Quantum Field Theory. J. Math. Phys. 36, 6073-6105 (1995) · Zbl 0863.18004 · doi:10.1063/1.531236
[7] Bar-Natan D.: Perturbative Chern-Simons Theory. J. Knot Theory Ramif. 4(4), 503-548 (1995) · Zbl 0861.57009 · doi:10.1142/S0218216595000247
[8] Batalin I.A., Vilkovisky G.A.: Gauge algebra and quantization. Phys. Lett. B 102(1), 27-31 (1981) · doi:10.1016/0370-2693(81)90205-7
[9] Batalin I.A., Vilkovisky G.A.: Quantization of gauge theories with linearly dependent generators. Phys. Rev. D 28(10), 2567-2582 (1983) · doi:10.1103/PhysRevD.28.2567
[10] Batalin I.A., Fradkin E.S.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122(2), 157-164 (1983) · Zbl 0967.81508 · doi:10.1016/0370-2693(83)90784-0
[11] Batalin I.A., Vilkovisky G.A.: Relativistic S-matrix of dynamical systems with boson and fermion costraints. Phys. Lett. B 69(3), 309-312 (1977) · doi:10.1016/0370-2693(77)90553-6
[12] Becchi C., Rouet A., Stora R.: Renormalization of gauge theories. Ann. Phys. 98(2), 287-321 (1976) · doi:10.1016/0003-4916(76)90156-1
[13] Tyutin, I.V.: Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism. Lebedev Physics Institute preprint 39 (1975). arXiv:0812.0580
[14] Berezin, F.A.: Introduction to Superanalysis. In: Kirillov, A. (ed.), translated by Niederle, J., Kotecku R. Springer (2010) · Zbl 1058.81034
[15] Bott R., Cattaneo A.S.: Integral invariants of 3-manifolds. J. Differ. Geom. 48(1), 91-133 (1998) · Zbl 0953.57008
[16] Bott R., Cattaneo A.S.: Integral invariants of 3-manifolds. II. J. Differ. Geom. 53(1), 1-13 (1999) · Zbl 1036.57500
[17] Cappell, S., DeTurck, D., Gluck, H., Miller, E.: Cohomology of harmonic forms on Riemannian manifolds with boundary. Forum. Math 18(6), (2006). arXiv:math/0508372 (math.DG) · Zbl 1114.53031
[18] Cattaneo, A.S., Contreras, I.: Groupoids and Poisson sigma models with boundary. arXiv:1206.4330 (math.SG) · Zbl 1299.81035
[19] Cattaneo A.S., Cotta-Ramusino P., Fucito F., Martellini M., Rinaldi M., Tanzini A., Zeni M.: Four-dimensional Yang-Mills theory as a deformation of topological BF theory. Commun. Math. Phys. 197, 571-621 (1998) · Zbl 0927.58023 · doi:10.1007/s002200050465
[20] Cattaneo A.S., Felder G.: A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591-611 (2000) · Zbl 1038.53088 · doi:10.1007/s002200000229
[21] Cattaneo A.S., Felder G.: On the AKSZ formulation of the Poisson sigma model. Lett. Math. Phys. 56, 163-179 (2001) · Zbl 1058.81034 · doi:10.1023/A:1010963926853
[22] Cattaneo A.S., Mnev P.: Remarks on Chern-Simons invariants. Commun. Math. Phys. 293, 803-836 (2010) · Zbl 1246.58018 · doi:10.1007/s00220-009-0959-1
[23] Cattaneo, A.S., Schaetz, F.: Introduction to supergeometry. Rev. Math. Phys. 23, 669-690 (2011); e-Print: arXiv:1011.3401 (math-ph) · Zbl 1223.58006
[24] Cattaneo A.S., Qiu J., Zabzine M.: 2D and 3D topological field theories for generalized complex geometry. Adv. Theor. Math. Phys. 14(2), 695-725 (2010) · Zbl 1206.81118 · doi:10.4310/ATMP.2010.v14.n2.a9
[25] Costello, K.: Topological conformal field theories and Calabi-Yau categories. Adv. Math. 20(1), 165-214 (2007). arXiv:math/0412149 · Zbl 1171.14038
[26] Costello, K. Renormalization and effective field theory. In: Mathematical Surveys and Monographs, vol. 170. AMS, Providence (2011) · Zbl 1221.81004
[27] Faddeev L.D., Popov V.N.: Feynman diagrams for the Yang-Mills field. Phys. Lett. B 25, 29 (1967) · doi:10.1016/0370-2693(67)90067-6
[28] Freed, D.: Classical Chern-Simons theory, Part 1. Adv.Math. 113, 237-303 (1995). arXiv:hep-th/9206021 · Zbl 0844.58039
[29] Fröhlich J., King C.: The Chern-Simons theory and knot polynomials. Commun. Math. Phys. 126(1), 167-199 (1989) · Zbl 0681.57019 · doi:10.1007/BF02124336
[30] Grigoriev, M.: Parent formulation at the Lagrangian level. J. High Energ. Phys. 1107, 061 (2011). arXiv:1012.1903 · Zbl 1298.81346
[31] Gorodentsev, A.L., Khoroshkin, A.S., Rudakov, A.N.: On syzygies of highest wight orbits. arXiv:math/0602316 (math.AG), see Lemma 3.5.1 (p. 20) · Zbl 1133.13012
[32] Guadagnini E., Martellini M., Mintchev M.: Perturbative aspects of the Chern-Simons field theory. Phys. Lett. B 227, 111-117 (1989) · doi:10.1016/0370-2693(89)91291-4
[33] Gugenheim V.K.A.M., Lambe L.A.: Perturbation theory in differential homological algebra I. Illinois J. Math. 33(4), 566-582 (1989) · Zbl 0661.55018
[34] Kontsevich, M.: Feynman diagrams and low-dimensional topology. First European Congress of Mathematics, vol. II (Paris, 1992), pp. 97-121, Progr. Math., 120, Birkhäuser, Basel (1994) · Zbl 0872.57001
[35] Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. arXiv:math/0011041 (math.SG) · Zbl 1072.14046
[36] Loday, J.-L., Vallette, B.: Algebraic operads. section 10.3.7 available for download at http://math.unice.fr/ brunov/Operads.pdf · Zbl 1260.18001
[37] Lurie, J.: On the classification of topological field theories. In: Current Developments in Mathematics, 2008, pp. 129-280. International Press, Somerville, MA (2009) · Zbl 1180.81122
[38] Moore G., Seiberg N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123(2), 177-254 (1989) · Zbl 0694.53074 · doi:10.1007/BF01238857
[39] Park, J.-S.: Topological open P-branes. In: Fukaya, K., Oh, Y.-G., Ono, K., Tian, G. (eds.) Symplectic Geometry and Mirror Symmetry, pp. 311-384, World Scientific, Singapore (2001) arXiv:hep-th/0012141 · Zbl 0980.00036
[40] Reshetikhin N., Turaev V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(3), 547-597 (1991) · Zbl 0725.57007 · doi:10.1007/BF01239527
[41] Roytenberg D.: AKSZ-BV formalism and courant algebroid-induced topological field theories. Lett. Math. Phys. 79, 143-159 (2007) · Zbl 1125.81040 · doi:10.1007/s11005-006-0134-y
[42] Rozansky L.: Reshetikhin’s formula for the Jones polynomial of a link: Feynman diagrams and Milnor’s linking numbers. Topology and physics. J. Math. Phys. 35(10), 5219-5246 (1994) · Zbl 0824.57006 · doi:10.1063/1.530749
[43] Schwarz A.S.: Geometry of Batalin-Vilkovisky quantization. Commun. Math. Phys. 155, 249-260 (1993) · Zbl 0786.58017 · doi:10.1007/BF02097392
[44] Segal, G.: The definition of conormal field theory. In: Topology, Geometry and Quantum Field Theory, London Mathematical Society Lecture Note Series (No. 308). Cambridge University Press, Cambridge, pp. 421-577 (2004) · Zbl 1372.81138
[45] Severa P.: On the origin of the BV operator on odd symplectic supermanifolds. Lett. Math. Phys. 78(1), 55-59 (2006) · Zbl 1107.58001 · doi:10.1007/s11005-006-0097-z
[46] Stoltz, S., Teichner, P.: Supersymmetric field theories and generalized cohomology. In: Mathematical Foundations of Quantum Field Theory and Perturbating String Theory, Proceedings of Symposics in Pone Mathematics, vol. 83, pp. 279-340. AMS, Providence (2011). arXiv:/1108.0189 · Zbl 1257.55003
[47] Varadarajan, V.S.: Supersymmetry for Mathematicians: An Introduction, Courant Lecture Notes, vol. 11. AMS, Providence (2004) · Zbl 1142.58009
[48] Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351-399 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
[49] Witten E.: Two dimensional gauge theories revisited. J. Geom. Phys. 9, 303-368 (1992) · Zbl 0768.53042 · doi:10.1016/0393-0440(92)90034-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.