×

Rough \(\mathcal I\)-convergence. (English) Zbl 1309.40002

The authors introduce the notion of rough \(\mathcal{I}\)-convergence, using the concept of \(\mathcal{I}\)-convergence and the concept of rough convergence as follows:
Let \(r\) be a nonnegative real number and \(\mathcal{I}\) be a nontrivial ideal. A sequence \((x_i)\in \mathbb{R}^{n}\) is said to be rough \(\mathcal{I}\)-convergent to \(x\) if, for every \(\epsilon>0\), \[ \{i\in \mathbb{N} : \|x_i-x\|\geq r+\epsilon \}\in \mathcal{I}. \] They define the set of rough \(\mathcal{I}\)-limit points of a sequence and investigate some properties of this set.
Reviewer: Umit Totur (Aydin)

MSC:

40A35 Ideal and statistical convergence

References:

[1] S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optim. 29(3-4) (2008), 291-303.; · Zbl 1159.40002
[2] S. Aytar, The rough limit set and the core of a real requence, Numer. Funct. Anal. Optim. 29(3-4) (2008), 283-290.; · Zbl 1159.40001
[3] K. Demirci, I-limit superior and limit inferior, Math. Commun. 6 (2001), 165-172.; · Zbl 0992.40002
[4] H. Fast, Sur la convergenc statistique, Colloq. Math. 2 (1951), 241-244.; · Zbl 0044.33605
[5] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.; · Zbl 0588.40001
[6] P. Kostyrko, T. Salat, W. Wilczynski, I-convergence, Real Anal. Exchange 26(2) (2000), 669-686.;
[7] P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca 55 (2005), 443-464.; · Zbl 1113.40001
[8] H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811-1819.; · Zbl 0830.40002
[9] F. Nuray, W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513-527.; · Zbl 0955.40001
[10] H. X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optim. 22 (2001), 199-222.; · Zbl 0986.46012
[11] H. X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. Optim. 23 (2002), 139-146.; · Zbl 1017.47016
[12] H. X. Phu, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optim. 24 (2003), 285-301.; · Zbl 1029.46005
[13] T. Salát, B. C. Tripathy, M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math. 17 (2005), 45-54.; · Zbl 1099.40005
[14] T. Salát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.; · Zbl 0437.40003
[15] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375.; · Zbl 0089.04002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.