×

High rank elliptic curves with prescribed torsion group over quadratic fields. (English) Zbl 1324.11044

All possible torsion groups of elliptic curves \(E\) defined over a quadratic field \({\mathbb Q}({\sqrt{d}})\) are known and a parametrization of the curves having such groups has been given by Rabarison. In the paper under review, the authors construct for each of these groups a curve having a prescribed torsion group over some quadratic field and high rank. Their method rests on the formula \[ {\text{rank}}(E({\mathbb Q} ({\sqrt{d}})))={\text{rank}}(E({\mathbb Q}))+{\text{rank}}(E^{(d)}({\mathbb Q}), \] where \(E^{(d)}\) is the \(d\) quadratic twist of \(E\). When the torsion group \(T\) is also a torsion group of some curve \(E\) over \({\mathbb Q}\), the authors searched for curves \(E\) with prescribed torsion group \(T\) and a reasonable rank over \({\mathbb Q}\) and for a suitable twist \(E^{(d)}\) with a reasonable large rank such that \(E({\mathbb Q} ({\sqrt{d}}))\) does not acquire additional torsion. They found several interesting examples in this way, for example a curve with \(T={\mathbb Z}/12{\mathbb Z}\) and rank at least \(7\) (the highest rank over \({\mathbb Q}\) known for this \(T\) is \(4\)). For other groups such as \({\mathbb Z}/2{\mathbb Z}\times {\mathbb Z}/10{\mathbb Z}\) which do not appear as torsion groups of elliptic curves \(E\) over \({\mathbb Q}\) they started with a subgroup \(H\) of it (in this case \({\mathbb Z} /10{\mathbb Z}\)) and an elliptic curve \(E\) whose torsion over \({\mathbb Q}\) is \(H\) and searched for a twist with additional torsion points. In this way, they found interesting examples (of rank at least \(2\)) for all possible torsion groups except for \({\mathbb Z}/15{\mathbb Z}\) for which an example of rank at least \(1\) was already known and for which the authors do not have examples of larger ranks.

MSC:

11G05 Elliptic curves over global fields
14H52 Elliptic curves
11R11 Quadratic extensions

Software:

ecdata; Magma; PARI/GP

References:

[1] J. Aguirre, F. Castañeda, J.C. Peral, High rank elliptic curves with torsion group \[{\mathbb{Z}}/2{\mathbb{Z}}\] Z/2Z. Math. Comp. 73, 323-331 (2004) · Zbl 1094.11020 · doi:10.1090/S0025-5718-03-01547-3
[2] B.J. Birch, in Elliptic Curves and Modular Functions, Symposia Mathematica, vol. IV, (Academic Press, London, 1970), pp. 27-32 · Zbl 0857.11026
[3] W. Bosma, J. Cannon, C. Playoust, The magma algebra system i: the user language. J. Symb. Comp. 24, 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[4] J. Bosman, P. Bruin, A. Dujella, F. Najman, Ranks of elliptic curves with prescribed torsion over number fields. Int. Math. Res. Notices (2013). doi:10.1093/imrn/rnt013 · Zbl 1308.11056
[5] J. Cremona, Algorithms for Modular Elliptic Curves (Cambridge University Press, Cambridge, 1997) · Zbl 0872.14041
[6] A. Dujella, High rank elliptic curves with prescribed torsion. http://web.math.hr/duje/tors/tors.html · Zbl 0989.11032
[7] A. Dujella, M. Jukić Bokun, on the rank of elliptic curves over \[{\mathbb{Q}}(i)\] Q(i) with torsion group \[{\mathbb{Z}}_4\times{\mathbb{Z}}_4\] Z4×Z4. Proc. Jpn. Acad. Ser. A Math. Sci. 86, 93-96 (2010) · Zbl 1217.11058
[8] N. D. Elkies, Three lectures on elliptic surfaces and curves of high rank. Lecture notes, Oberwolfach (2007) arXiv:0709.2908 · Zbl 0766.14023
[9] M. Jukić Bokun, On the rank of elliptic curves over \[{\mathbb{Q}}(\sqrt{-3})\] Q(\sqrt{-3}) with torsion group \[{\mathbb{Z}}_3\times{\mathbb{Z}}_3\] Z3×Z3 and \[{\mathbb{Z}}_3\times{\mathbb{Z}}_6\] Z3×Z6. Proc. Jpn. Acad. Ser. A Math. Sci. 87, 61-64 (2011) · Zbl 1281.11056
[10] S. Kamienny, Torsion points on elliptic curves and \[q\] q-coefficients of modular forms. Invent. Math. 109, 221-229 (1992) · Zbl 0773.14016 · doi:10.1007/BF01232025
[11] M.A. Kenku, F. Momose, Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109, 125-149 (1988) · Zbl 0647.14020
[12] L. Kulesz, C. Stahlke, Elliptic curves of high rank with nontrivial torsion group over \[{\mathbb{Q}}\] Q. Exp. Math. 10, 475-480 (2001) · Zbl 1060.11036 · doi:10.1080/10586458.2001.10504464
[13] J.-F. Mestre, Rang des courbes elliptiques d’ invariant donné. C. R. Acad. Sci. Paris 314, 919-922 (1992) · Zbl 0766.14023
[14] J.-F. Mestre, Rang de certaines familles de courbes elliptiques d’ invariant donné. C. R. Acad. Sci. Paris 327, 763-764 (1998) · Zbl 0920.11036 · doi:10.1016/S0764-4442(98)80166-3
[15] K. Nagao, An example of elliptic curve over q with rank \[\ge 20\]≥20. Proc. Jpn. Acad. Ser. A Math. Sci. 69, 291-293 (1993) · Zbl 0794.14014 · doi:10.3792/pjaa.69.291
[16] PARI/GP, version 2.4.0, Bordeaux (2008). http://pari.math.u-bordeaux.fr
[17] F.P. Rabarison, Structure de torsion des courbes elliptiques sur les corps quadratiques. Acta Arith. 144, 17-52 (2010) · Zbl 1228.11085 · doi:10.4064/aa144-1-3
[18] K. Rubin, A. Silverberg, Rank frequencies for quadratic twists of elliptic curves. Exp. Math. 10, 559-569 (2001) · Zbl 1035.11025 · doi:10.1080/10586458.2001.10504676
[19] K. Rubin, A. Silverberg, Twists of elliptic curves of rank at least four, in Ranks of Elliptic Curves and Random Matrix Theory, ed. by J.B. Conrey, D.W. Farmer, F. Mezzadri, N.C. Snaith (Cambridge University Press, Cambridge, 2007), pp. 177-188 · Zbl 1213.11122
[20] Schneiders, U.; Zimmer, HG; Pethő, A. (ed.); Pohst, ME (ed.); Williams, HC (ed.); Zimmer, HG (ed.), The rank of elliptic curves upon quadratic extension, 239-260 (1991), Berlin · Zbl 0743.14023
[21] J. Silverman, The Arithmetic of Elliptic curves (Springer, New York, 2009) · Zbl 1194.11005 · doi:10.1007/978-0-387-09494-6
[22] C.L. Stewart, J. Top, On ranks of twists of elliptic curves and power-free values of binary forms. J. Am. Math. Soc. 8, 943-973 (1995) · Zbl 0857.11026 · doi:10.1090/S0894-0347-1995-1290234-5
[23] T. Womack, Curves with moderate rank and interesting torsion group. http://tom.womack.net/maths/torsion.htm
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.