×

Analogues of Ramanujan’s 24 squares formula. (English) Zbl 1303.11048

The authors determine a class of formulae analogous to the Ramanujan formula for the number of representations of a positive integer as a sum of 24 squares. For example the number of representations of \(n-1\) as a sum of 16 squares and 8 triangular number is \[ {1\over 691} \sigma_{11}(n)- {1\over 691} \sigma_{11}\Biggl({n\over 2}\Biggr)+ {690\over 691}\tau(n)+ {42152\over 691} \tau\Biggl({n\over 2}\Biggr)+8192\,\tau\Biggl({n\over 2}\Biggr)+ 25\,\omega(n), \] where \(\tau\) is the Ramanujan tau-function and where \(\omega(n)\) is defined through \[ q^3 \prod^\infty_{n=1} (1- q^n)^8(1- q^{4n})^{16}= \sum^\infty_{n=1} \omega(n)\,q^n. \]

MSC:

11E25 Sums of squares and representations by other particular quadratic forms
11F27 Theta series; Weil representation; theta correspondences
Full Text: DOI

References:

[1] DOI: 10.1017/S0004972700039174 · Zbl 1115.33017 · doi:10.1017/S0004972700039174
[2] DOI: 10.1090/stml/034 · doi:10.1090/stml/034
[3] DOI: 10.1017/S0013091503000956 · Zbl 1156.11301 · doi:10.1017/S0013091503000956
[4] DOI: 10.1090/conm/291/04896 · doi:10.1090/conm/291/04896
[5] Diamond F., A First Course in Modular Forms (2005) · Zbl 1062.11022
[6] DOI: 10.1090/gsm/037 · doi:10.1090/gsm/037
[7] Knopp M. I., Modular Functions in Analytic Number Theory (1993) · Zbl 0997.11500
[8] DOI: 10.1007/978-1-4612-0909-6 · doi:10.1007/978-1-4612-0909-6
[9] DOI: 10.1007/978-3-642-16152-0 · Zbl 1222.11060 · doi:10.1007/978-3-642-16152-0
[10] Mordell L. J., Proc. Cambridge Philos. Soc. 19 pp 117– (1917)
[11] DOI: 10.1112/plms/s3-9.3.373 · Zbl 0178.43001 · doi:10.1112/plms/s3-9.3.373
[12] DOI: 10.1007/BF01831114 · Zbl 0828.11057 · doi:10.1007/BF01831114
[13] Ramanujan S., Trans. Cambridge Philos. Soc. 22 pp 159– (1916)
[14] Ramanujan S., Trans. Cambridge Philos. Soc. 22 pp 259– (1918)
[15] DOI: 10.4064/aa158-1-5 · Zbl 1278.11043 · doi:10.4064/aa158-1-5
[16] DOI: 10.4169/amer.math.monthly.120.04.329 · Zbl 1305.11026 · doi:10.4169/amer.math.monthly.120.04.329
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.