×

Multiple Dedekind-Rademacher sums in function fields. (English) Zbl 1303.11049

The Dedekind sum can be defined by \[ s(h,k) := {1 \over {4k}} \sum_{ r=1 }^{ k-1 } \cot \left( {{\pi r} \over k} \right) \cot \left( {{\pi hr} \over k} \right) , \] where \(h\) and \(k\) are positive, relatively prime integers. Dedekind sums first appeared in Dedekind’s work on the \(\eta\)-function and have been generalized in various ways, e.g., by D. Zagier [Math. Ann. 202, 149–172 (1973; Zbl 0237.10025)] who considered an arbitrary number of cotangent factors, and by A. Bayad and A. Raouj [J. Number Theory 132, No. 2, 332–347 (2012; Zbl 1247.11058)] who replaced the cotangent by cotangent derivatives.
The paper under review continues the development of Dedekind sums in function fields [Y. Hamahata, Proc. Japan Acad., Ser. A 84, No. 7, 89–92 (2008; Zbl 1225.11055); S. Okada, J. Number Theory 130, No. 8, 1750–1762 (2010; Zbl 1197.11155); A. Bayad and Y. Hamahata, Acta Arith. 152, No. 1, 71–80 (2012; Zbl 1301.11047)]. Let \(A:= {\mathbb F}_q[x]\) and \(\Lambda\) be an \(A\)-lattice, i.e., a finitely generated \(A\)-module satisfying certain discreteness conditions for a completion of the quotient field of \(A\), and let \[ e_\Lambda (z) := z \prod_{ \lambda \in \Lambda } \!{}^\prime \left( 1 - {z \over \lambda} \right) \] where the \('\) indicates that the sum/product is only taken over nonzero and nonsingular values. Note that \(e_\Lambda (z)^{ -1 } \) is a natural analogue of the cotangent function in this setting, and in [Zbl 1301.11047] the authors studied \[ s_\Lambda \left( a_n; a_1, a_2, \dots, a_{ n-1 } \right) = {{(-1)^{ n-1 }} \over { a_n }} \sum_{ \lambda \in \Lambda/a_n \Lambda } \!\!\!\!\!\!{}^\prime \;\;e_\Lambda \left( {{ a_1 \lambda } \over { a_n }} \right)^{ -1 } \cdots \;e_\Lambda \left( {{ a_{n-1} \lambda } \over { a_n }} \right)^{ -1 } , \] a function-field analogue of Zagier’s higher-dimensional Dedekind sum mentioned above. In the present paper the authors replace the \((-1)\)-powers by arbitrary negative powers, giving rise to an analogue of cotangent derivatives. The main result is a reciprocity theorem: when the arguments are coprime, a certain sum of multiple function-field Dedekind sums equals an expression involving analogues of Eisenstein series in this setting. The authors also prove a Petersson-Knopp identity for the multiple function-field Dedekind sums, in analogy of such identities for Dedekind sums [M. I. Knopp, J. Number Theory 12, 2–9 (1980; Zbl 0423.10015)] and their multivariate versions [M. Beck, Acta Arith. 109, No. 2, 109–130 (2003; Zbl 1061.11043)]. They finish by exhibiting an appearance of the multiple function-field Dedekind sums in connection with the Goss \(L\)-function [D. Goss, Basic structures of function field arithmetic. Berlin: Springer (1998; Zbl 0892.11021)].

MSC:

11F20 Dedekind eta function, Dedekind sums
11G09 Drinfel’d modules; higher-dimensional motives, etc.
11M38 Zeta and \(L\)-functions in characteristic \(p\)
11R58 Arithmetic theory of algebraic function fields
Full Text: DOI

References:

[1] DOI: 10.4064/aa152-1-6 · Zbl 1301.11047 · doi:10.4064/aa152-1-6
[2] DOI: 10.1016/j.jnt.2011.05.020 · Zbl 1247.11058 · doi:10.1016/j.jnt.2011.05.020
[3] DOI: 10.4064/aa109-2-1 · Zbl 1061.11043 · doi:10.4064/aa109-2-1
[4] DOI: 10.5802/jtnb.256 · Zbl 0994.11027 · doi:10.5802/jtnb.256
[5] DOI: 10.1007/BF01410204 · Zbl 0653.14012 · doi:10.1007/BF01410204
[6] DOI: 10.1090/S0273-0979-1980-14751-5 · Zbl 0433.14017 · doi:10.1090/S0273-0979-1980-14751-5
[7] Goss D., Basic Structures of Function Fields Arithmetic (1998) · Zbl 0892.11021
[8] DOI: 10.1007/s00605-012-0423-8 · Zbl 1259.11062 · doi:10.1007/s00605-012-0423-8
[9] DOI: 10.1142/S1793042113500358 · Zbl 1318.11058 · doi:10.1142/S1793042113500358
[10] DOI: 10.1016/0022-314X(80)90067-0 · Zbl 0423.10015 · doi:10.1016/0022-314X(80)90067-0
[11] DOI: 10.4153/CMB-1993-028-8 · Zbl 0802.11032 · doi:10.4153/CMB-1993-028-8
[12] DOI: 10.1016/j.jnt.2010.02.010 · Zbl 1197.11155 · doi:10.1016/j.jnt.2010.02.010
[13] Rademacher H., Dedekind Sums (1972)
[14] Walum H., Illinois J. Math. 26 pp 1– (1982)
[15] DOI: 10.1007/BF01351173 · Zbl 0237.10025 · doi:10.1007/BF01351173
[16] DOI: 10.5802/jtnb.179 · Zbl 0871.11033 · doi:10.5802/jtnb.179
[17] DOI: 10.1006/jnth.1996.0045 · Zbl 0847.11021 · doi:10.1006/jnth.1996.0045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.