×

On the differences between two kinds of mean value formulas of number-theoretic error terms. (English) Zbl 1312.11078

Let \(d(n)\) denotes the number of positive divisors of \(n\), and let \[ \Delta(x)=\sum_{n\leq x}d(n)-x\left(\log x+2\gamma-1\right). \] In the paper under review the authors obtain asymptotic formulas for the difference \[ \sum_{n\leq x}\Delta(n)^k-\int_1^x\Delta(t)^k dt, \] for \(4\leq k\leq 10\). The authors do a similar work concerning the above mentioned difference replacing \(\Delta(x)\) by \(P(x)=\sum_{n\leq x}r(n)-\pi x\), where \(r(n)\) is the number of ways to write \(n\) as a sum of two squares. They also consider the differences for the mean value formulas of the error term of the Rankin-Selberg problem, concerning the \(n\)th Fourier coefficient of holomorphic cusp form of weight \(\kappa\) with respect to the full modular group \(\mathrm{SL}(2,\mathbb{Z})\). The paper contains some general results involving the differences for the discrete and continuous mean value formulas of arithmetic functions, and ends by an appendix about Hardy’s results concerning these differences.

MSC:

11N37 Asymptotic results on arithmetic functions
11N56 Rate of growth of arithmetic functions
Full Text: DOI

References:

[1] DOI: 10.1007/978-1-4684-9910-0 · doi:10.1007/978-1-4684-9910-0
[2] DOI: 10.1007/s00605-009-0098-y · Zbl 1220.11119 · doi:10.1007/s00605-009-0098-y
[3] Chowla S., Norske Vid. Selsk. Forhdl. 36 pp 127– (1963)
[4] Furuya J., Publ. Math. Debrecen 67 pp 381– (2005)
[5] DOI: 10.1016/j.jnt.2004.07.007 · Zbl 1089.11055 · doi:10.1016/j.jnt.2004.07.007
[6] DOI: 10.1007/s00605-010-0195-y · Zbl 1296.11100 · doi:10.1007/s00605-010-0195-y
[7] Hardy G. H., Proc. London Math. Soc. 15 pp 192– (1916)
[8] Heath-Brown D. R., Acta Arith. 60 pp 389– (1992)
[9] DOI: 10.1112/S0024611503014485 · Zbl 1065.11079 · doi:10.1112/S0024611503014485
[10] DOI: 10.1007/BF02095990 · Zbl 0489.10045 · doi:10.1007/BF02095990
[11] Ivić A., Acta Arith. 56 pp 135– (1990)
[12] Ivić A., The Riemann Zeta-Function, Theory and Applications (2003) · Zbl 1114.11071
[13] DOI: 10.2298/PIM0694141I · Zbl 1174.11076 · doi:10.2298/PIM0694141I
[14] DOI: 10.1017/S0305004199003564 · Zbl 0958.11065 · doi:10.1017/S0305004199003564
[15] Ivić A., Illinois J. Math. 51 pp 353– (2007)
[16] DOI: 10.1016/0022-314X(85)90031-9 · Zbl 0467.10032 · doi:10.1016/0022-314X(85)90031-9
[17] Kátai I., Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 pp 39– (1965)
[18] DOI: 10.5802/jtnb.131 · Zbl 0844.11059 · doi:10.5802/jtnb.131
[19] DOI: 10.1017/S0305004108001874 · Zbl 1229.11125 · doi:10.1017/S0305004108001874
[20] Preissmann E., C. R. Acad. Sci. Paris Sér. I 306 pp 151– (1988)
[21] DOI: 10.1017/S0305004100021101 · doi:10.1017/S0305004100021101
[22] Selberg A., Arch. Math. Naturvid. 43 pp 47– (1940)
[23] DOI: 10.1112/plms/s3-65.1.65 · Zbl 0725.11046 · doi:10.1112/plms/s3-65.1.65
[24] Voronoï G. F., J. Reine Angew. Math. 126 pp 241– (1903)
[25] Voronoï G. F., Ann. Sci. Éc. Norm. Supér. 21 pp 459– (1904) · doi:10.24033/asens.545
[26] DOI: 10.4064/aa114-1-3 · Zbl 1123.11031 · doi:10.4064/aa114-1-3
[27] DOI: 10.4064/aa118-3-3 · Zbl 1085.11049 · doi:10.4064/aa118-3-3
[28] DOI: 10.1142/S1793042111003922 · Zbl 1248.11071 · doi:10.1142/S1793042111003922
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.