×

Gaussian decay for a difference of traces of the Schrödinger semigroup associated with the isotropic harmonic oscillator. (English) Zbl 1293.81017

Summary: This paper deals with the derivation of a sharp estimate on the difference of traces of the one-parameter Schrödinger semigroup associated with the quantum isotropic harmonic oscillator. Denoting by \(H_{\infty,\kappa}\) the self-adjoint realization in \(L^2(\mathbb R^d)\), \(d\in\{1,2,3\}\) of the Schrödinger operator \(-\frac{1}{2}\Delta+\frac{1}{2}\kappa^2|\mathbf x|^2\), \(\kappa>0\) and by \(H_{L,\kappa}\), \(L>0\) the Dirichlet realization in \(L^2(\Lambda_L^d)\) where \(\Lambda_L^d:=\{\mathbf x\in\mathbb R^d:-\frac{L}{2}<x_l<\frac{L}{2},l=1,\dots,d\}\), we prove that the difference of traces \(\mathrm{Tr}_{L^2(\mathbb R^d)}\mathrm e^{-tH_{\infty,\kappa}}-\mathrm{Tr}_{L^2(\Lambda_L^d)}\mathrm e^{-tH_{L,\kappa}}\), \(t>0\) has for \(L\) sufficiently large a Gaussian decay in \(L\). Furthermore, the estimate that we derive is sharp in the two following senses: its behavior when \(t\downarrow 0\) is similar to the one given by \(\mathrm{Tr}_{L^2(\mathbb R^d)}\mathrm e^{-t H_{\infty,\kappa}}=(2\sinh(\frac{\kappa}{2}t))^{-d}\) and the exponential decay in \(t\) arising from \(\mathrm{Tr}_{L^2(\mathbb R^d)}\mathrm e^{-tH_{\infty,\kappa}}\) when \(t\uparrow\infty\) is preserved. For illustrative purposes, we give a simple application within the framework of quantum statistical mechanics.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
47D08 Schrödinger and Feynman-Kac semigroups
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35J10 Schrödinger operator, Schrödinger equation
81Q15 Perturbation theories for operators and differential equations in quantum theory
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)

References:

[1] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1970), Dover Publications, Inc.: Dover Publications, Inc. New York, 9th printing with corrections
[2] Angelescu, N.; Bundaru, M.; Nenciu, G., On the perturbation of Gibbs semigroups, Comm. Math. Phys., 42, 29-30 (1975) · Zbl 0301.47034
[3] Beau, M.; Savoie, B., Rigorous investigation of the reduced density matrix for the ideal Bose gas in harmonic traps by a loop-gas-like approach, J. Math. Phys., 55, 053301 (2014) · Zbl 1296.82056
[4] Berezin, F. A.; Shubin, M. A., The Schrödinger Equation (1991), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0749.35001
[5] Briet, P.; Cornean, H. D.; Louis, D., Diamagnetic expansions for perfect quantum gases, J. Math. Phys., 47, 8, 083511 (2006) · Zbl 1112.82003
[6] Briet, P.; Cornean, H. D.; Louis, D., Diamagnetic expansions for perfect quantum gases II: uniform bounds, Asymptot. Anal., 59, 1-2, 109-123 (2008) · Zbl 1154.82302
[7] Broderix, K.; Hundertmark, D.; Leschke, H., Continuity properties of Schrödinger semigroups with magnetic fields, Rev. Math. Phys., 12, 181-225 (2000) · Zbl 0961.81006
[8] Cornean, H. D., On the magnetization of a charged Bose gas in the canonical ensemble, Comm. Math. Phys., 212, 1, 1-27 (2000) · Zbl 1025.82003
[9] Cornean, H. D.; Nenciu, G., The Faraday effect revisited: thermodynamic limit, J. Funct. Anal., 257, 7, 2024-2066 (2009) · Zbl 1178.82077
[10] Cornean, H. D.; Fournais, S.; Frank, R.; Hellfer, B., Sharp trace asymptotics for a class of 2D-magnetic operators, preprint · Zbl 1301.35070
[11] Hille, E.; Phillips, R. S., Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ., vol. 31 (1957), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 0078.10004
[12] Kubo, R., Statistical Mechanics, an Advance Course with Problems and Solutions (1965), North-Holland Physics Publishing: North-Holland Physics Publishing Amsterdam · Zbl 0131.44804
[13] Pitaevskii, L. P.; Stringari, S., Bose-Einstein Condensation (2003), Oxford University Press · Zbl 1110.82002
[14] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness (1975), Academic Press, Inc.: Academic Press, Inc. San Diego · Zbl 0308.47002
[15] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, IV: Analysis of Operators (1978), Academic Press, Inc.: Academic Press, Inc. San Diego · Zbl 0401.47001
[16] Ruelle, D., Statistical Mechanics, Rigorous Results (1969), W.A. Benjamin, Inc.: W.A. Benjamin, Inc. New York, Amsterdam · Zbl 0177.57301
[17] Savoie, B., On the atomic orbital magnetism: a rigorous derivation of the Larmor and Van Vleck contributions, Ann. Henri Poincaré (2014) · Zbl 1310.81160
[18] Simon, B., Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.). Bull. Amer. Math. Soc. (N.S.), Bull. Amer. Math. Soc. (N.S.), 11, 2, 426-526 (1984), Erratum:
[19] Uhlenbrock, D., Perturbation of statistical semigroups in quantum statistical mechanics, J. Math. Phys., 12, 2503-2512 (1971) · Zbl 0241.47031
[20] van den Berg, M., Bounds on Green’s functions of second-order differential equations, J. Math. Phys., 22, 11, 2452-2455 (1981) · Zbl 0475.35032
[21] van den Berg, M.; Lewis, T., On the free Boson gas in a weak external potential, Comm. Math. Phys., 81, 475-494 (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.