×

Common nonnegative definite solutions of some classical matrix equations. (English) Zbl 1391.15060

Let \(\mathbb{C}^{m\times n}\) and \(\mathbb{C}_{\geq}^{m}\) stand for the set of all \(m\times n\) complex matrices and the set of all \(m\times m\) Hermitian nonnegative definite matrices, respectively, and let \(A^{*}\) stand for the conjugate transpose of a matrix \(A\in \mathbb{C}^{m\times n}\). In this paper, the authors examine a necessary and sufficient condition for the existence of a Hermitian nonnegative definite solution of the system: \[ A_{1}X=C_{1}, \;XB_{2}=C_{2},\;A_{3}X{A_{3}}^{*}=C_{3}, \;A_{4}X{A_{4}}^{*}=C_{4}, \] where \(A_{1},C_{1}\in\mathbb{C}^{m\times n}\), \(B_{2},C_{2}\in\mathbb{C}^{n\times s}\), \(A_{3},A_{4}\in \mathbb{C}_{\geq}^{n}\) and \(C_{3},C_4\in\mathbb{C}^{n\times n}\). Moreover, the authors give some special cases of their main results. Furthermore, they give a numerical example to illustrate the results of the paper.

MSC:

15A24 Matrix equations and identities
65F30 Other matrix algorithms (MSC2010)
15A03 Vector spaces, linear dependence, rank, lineability
15A09 Theory of matrix inversion and generalized inverses
Full Text: DOI

References:

[1] Baksalary, J.K.: Nonnegative definite and positive definite solutions to the matrix equation AXA B. Linear Multilinear Algebra 16, 133–139 (1984) · Zbl 0552.15009 · doi:10.1080/03081088408817616
[2] Chu, D.L., Chan, H., Ho, D.W.C.: Regularization of singular systems by derivative and proportional output feedback. SIAM J. Matrix Anal. Appl. 19, 21–38 (1998) · Zbl 0912.93027 · doi:10.1137/S0895479895270963
[3] Chu, D.L., Mehrmann, V., Nichols, N.K.: Minimum norm regularization of descriptor systems by mixed output feedback. Linear Algebra Appl. 296, 39–77 (1999) · Zbl 0959.93032 · doi:10.1016/S0024-3795(99)00108-1
[4] Cvetković-Ilić, D.S.: Re-nnd solutions of the matrix equation AXB=C. J. Aust. Math. Soc. 84, 63–72 (2008) · Zbl 1157.15012 · doi:10.1017/S1446788708000207
[5] Cvetković-Ilić, D.S., Dajić, A., Koliha, J.J.: Positive and real-positive solutions to the equation axa c in C algebras. Linear Multilinear Algebra 55, 535–543 (2007) · Zbl 1180.47014 · doi:10.1080/03081080701248112
[6] Dai, H., Lancaster, P.: Linear matrix equations from an inverse problem of vibration theory. Linear Algebra Appl. 246, 31–47 (1996) · Zbl 0861.15014 · doi:10.1016/0024-3795(94)00311-4
[7] Dajić, A., Koliha, J.J.: Positive solutions to the equations AX=C and XB=D for Hilbert space operators. J. Math. Anal. Appl. 333, 567–576 (2007) · Zbl 1120.47009 · doi:10.1016/j.jmaa.2006.11.016
[8] Dajić, A., Koliha, J.J.: Equations ax=c and xb=d in rings and rings with involution with applications to Hilbert space operators. Linear Algebra Appl. 429, 1779–1809 (2008) · Zbl 1149.47011 · doi:10.1016/j.laa.2008.05.012
[9] Fang, X., Yu, J., Yao, H.: Solutions to operator equations on Hilbert C modules. Linear Algebra Appl. 431, 2142–2153 (2009) · Zbl 1175.47014 · doi:10.1016/j.laa.2009.07.009
[10] Farid, F.O., Moslehian, M.S., Wang, Q.W., Wu, Z.C.: On the Hermitian solutions to a system of adjointable operator equations. Linear Algebra Appl. 437, 1854–1891 (2012) · Zbl 1276.47018 · doi:10.1016/j.laa.2012.05.012
[11] Groß, J.: Nonnegative-define and positive solutions to the matrix equation AXA B revisited. Linear Algebra Appl. 321, 123–129 (2000) · Zbl 0984.15011 · doi:10.1016/S0024-3795(00)00033-1
[12] Johnson, C.R., Lundquist, M.: Operator matrix with chordal inverse patterns. Oper. Theory: Adv. Appl. 59, 234–251 (1992) · Zbl 0806.47010
[13] Khatri, C.G., Mitra, S.K.: Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math. 31, 579–585 (1976) · Zbl 0359.65033 · doi:10.1137/0131050
[14] Liu, Y., Tian, Y.: Max-min problems on the ranks and inertias of the matrix expressions AXC{\(\pm\)}(BXC)with applications. J. Optim. Theory Appl. 148, 593–622 (2011) · Zbl 1223.90077 · doi:10.1007/s10957-010-9760-8
[15] Tian, Y.: Maximization and minimization of the rank and inertia of the Hermitian matrix expression AXBX)with applications. Linear Algebra Appl. 434, 2109–2139 (2011) · Zbl 1211.15022 · doi:10.1016/j.laa.2010.12.010
[16] Wang, Q.W., Dong, C.Z.: Positive solutions to a system of adjointable operator equations over the Hilbert C modules. Linear Algebra Appl. 433, 1481–1489 (2010) · Zbl 1214.47015 · doi:10.1016/j.laa.2010.05.023
[17] Wang, Q.W., Woude, J.W., Chang, H.: A system of real quaternion matrix equations with applications. Linear Algebra Appl. 431, 2291–2303 (2009) · Zbl 1180.15019 · doi:10.1016/j.laa.2009.02.010
[18] Xu, Q.: Common hermitian and positive solutions to the adjointable operator equations AX=C, XB=D. Linear Algebra Appl. 429, 1–11 (2008) · Zbl 1153.47012 · doi:10.1016/j.laa.2008.01.030
[19] Young, D.M., Seaman, J.W., Meaux, L.M.: Independence distribution preserving covariance structures for the multivariate model. J. Multivar. Anal. 68, 165–175 (1999) · Zbl 0927.62057 · doi:10.1006/jmva.1998.1787
[20] Zhang, X.: Hermitian nonnegative-definite and positive-define solutions of the matrix equation AXB=C. Appl. Math. E-Notes 4, 40–47 (2004) · Zbl 1067.15009
[21] Zhang, X.: The general common nonnegative definite and positive definite solutions to the matrix equations AXA BB and CXC DD with applications in statistics. J. Multivar. Anal. 93, 257–266 (2005) · Zbl 1071.15014 · doi:10.1016/j.jmva.2004.04.009
[22] Zhang, X., Cheng, M.: The general common nonnegative definite and positive definite solutions to the matrix equations AXA BB and CXC DD Appl. Math. Lett. 17, 543–547 (2004) · Zbl 1062.15009 · doi:10.1016/S0893-9659(04)90123-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.