×

Existence of solutions for nonlinear high-order fractional boundary value problem with integral boundary condition. (English) Zbl 1296.34042

Summary: The main purpose of this paper is to present the existence results of solutions and positive solutions of nonlinear high-order fractional boundary value problems with integral boundary condition. By using the Banach fixed point theorem and the Krasnosel’skii fixed point theorem, we obtain the existence and uniqueness of real solution. By the Guo-Krasnosel’skii fixed point theorem on the cone, we obtain a desired result for guaranteeing the existence of positive solution. Several interesting examples relevant to the main results are also considered.

MSC:

34A08 Fractional ordinary differential equations
47H10 Fixed-point theorems
Full Text: DOI

References:

[1] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) · Zbl 0292.26011
[2] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[3] Sabatier, J., Agrawal, O.P., Machado, J.A.T.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007) · Zbl 1116.00014
[4] Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002) · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4
[5] Agrawal, O.P.: Generalized variational problems and Euler–Lagrange equations. Comput. Math. Appl. 59, 1852–1864 (2010) · Zbl 1189.49029 · doi:10.1016/j.camwa.2009.08.029
[6] Xu, Y.F., He, Z.M.: The short memory principle for solving Abel differential equation of fractional order. Comput. Math. Appl. 62, 4796–4805 (2011) · Zbl 1236.34008 · doi:10.1016/j.camwa.2011.10.071
[7] Agrawal, O.P.: Some generalized fractional calculus operators and their applications in integral equations. Fract. Calc. Appl. Anal. 15, 700–711 (2012) · Zbl 1312.26010 · doi:10.2478/s13540-012-0047-7
[8] Ma, S.C., Xu, Y.F., Yue, W.: Numerical solutions of a variable-order fractional financial system. J. Appl. Math. 2012, 1–14 (2012) · Zbl 1251.91070
[9] Xu, Y.F., He, Z.M.: Existence and uniqueness results for Cauchy problem of variable-order fractional differential equations. J. Appl. Math. Comput. (2013). doi: 10.1007/s12190-013-0664-2 · Zbl 1296.34041
[10] Ertürk, V.S., Odibat, Z.M.G., Momani, S.: An approximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells. Comput. Math. Appl. 62, 996–1002 (2011) · Zbl 1228.92064 · doi:10.1016/j.camwa.2011.03.091
[11] Ertürk, V.S., Zaman, G., Momani, S.: A numeric-analytic method for approximating a giving up smoking model containing fractional derivatives. Comput. Math. Appl. 64, 3065–3074 (2012) · Zbl 1268.65107 · doi:10.1016/j.camwa.2012.02.002
[12] Rajesh, K.P., Agrawal, O.P.: Numerical scheme for generalized isoperimetric constraint variational problems with A-operator. ASME, Portland (2013)
[13] Ma, S.C., Xu, Y.F., Yue, W.: Existence and uniqueness of solution for a class of nonlinear fractional differential equations. Adv. Differ. Equ. 133, 1–11 (2012) · Zbl 1347.34016
[14] Ahmad, B.: Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations. Appl. Math. Lett. 23, 390–394 (2010) · Zbl 1198.34007 · doi:10.1016/j.aml.2009.11.004
[15] Ahmad, B.: Existence of solutions for fractional differential equations of order q2,3] with anti-periodic boundary conditions. J. Appl. Math. Comput. 34, 385–391 (2010) · Zbl 1216.34003 · doi:10.1007/s12190-009-0328-4
[16] Wang, G.T.: Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments. J. Comput. Appl. Math. 236, 2425–2430 (2012) · Zbl 1238.65077 · doi:10.1016/j.cam.2011.12.001
[17] Zhao, X.K., Chai, C.G., Ge, W.G.: Positive solutions for fractional four-point boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 16, 3665–3672 (2011) · Zbl 1227.34010 · doi:10.1016/j.cnsns.2011.01.002
[18] Salem, H.A.H.: Fractional order boundary value problem with integral boundary conditions involving Pettis integral. Acta Math. Sci. 31, 661–672 (2011) · Zbl 1240.26009 · doi:10.1016/S0252-9602(11)60266-X
[19] Ahmad, B., Nieto, J.J., Alsaedi, A.: Existence and uniqueness of solutions for nonlinear fractional differential equations with non-separated type integral boundary conditions. Acta Math. Sci. 31, 2122–2130 (2011) · Zbl 1265.34009 · doi:10.1016/S0252-9602(11)60388-3
[20] Lakoud, A.G., Khaldi, R.: Solvability of a fractional boundary value problem with fractional integral condition. Nonlinear Anal. 75, 2692–2700 (2012) · Zbl 1239.26007 · doi:10.1016/j.na.2011.11.014
[21] Wei, Z.L., Pang, C.C., Ding, Y.Z.: Positive solutions of singular Caputo fractional differential equations with integral boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 17, 3148–3160 (2012) · Zbl 1246.35205 · doi:10.1016/j.cnsns.2011.12.010
[22] Yang, W.G.: Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions. Comput. Math. Appl. 63, 288–297 (2012) · Zbl 1238.34047 · doi:10.1016/j.camwa.2011.11.021
[23] Cabada, A., Wang, G.T.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389, 403–411 (2012) · Zbl 1232.34010 · doi:10.1016/j.jmaa.2011.11.065
[24] Alsulami, H.H., Ntouyas, S.K., Ahmad, B.: Existence results for a Riemann–Liouville–Type fractional multivalued problem with integral boundary conditions. J. Funct. Spaces Appl. 2013, 1–7 (2013). Article ID 676045 · Zbl 1281.34006 · doi:10.1155/2013/676045
[25] Momani, S., Odibat, Z.: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207, 96–110 (2007) · Zbl 1119.65127 · doi:10.1016/j.cam.2006.07.015
[26] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985) · Zbl 0559.47040
[27] Smart, D.R.: Fixed Point Theorems. Cambridge University Press, Cambridge (1980) · Zbl 0427.47036
[28] Guo, D.J., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988) · Zbl 0661.47045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.