×

A parameterized splitting iteration method for complex symmetric linear systems. (English) Zbl 1307.65038

The paper introduces and tests a parametrized splitting method (PS) to solve complex symmetric systems \((W + iT)x = b \in \mathbb C^n\) with positive (semi-)definite real symmetric matrices \(W\) and \(T\). The spectral radius of the iteration matrix is explicitly computed in terms of specific Raleigh quotients for \(W\) and \(TW^{-1}T\). This allows finding the optimal iteration parameter in terms of the extreme real eigenvalues of \(W\) and \(TW^{-1}T\). The PS method is further sped up by using preconditioned Krylov methods and restarts. Various such preconditioners are tested in conjunction with PS and give excellent results for sparse complex symmetric systems.

MSC:

65F10 Iterative numerical methods for linear systems
65F50 Computational methods for sparse matrices
65F08 Preconditioners for iterative methods
65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
Full Text: DOI

References:

[1] Arridge SR: Optical tomography in medical imaging. Inverse Probl. 15, 41–93 (1999) · Zbl 0926.35155 · doi:10.1088/0266-5611/15/2/022
[2] Axelsson O, Kucherov A: Real valued iteration methods for solving complex symmetric linear syetems. Numer. Linear Algebra Appl. 7, 197–218 (2000) · Zbl 1051.65025 · doi:10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S
[3] Bai Z-Z: Structured preconditioners for nonsingular matrices of block two-by-two structures. Math. Comput 75, 791–815 (2006) · Zbl 1091.65041 · doi:10.1090/S0025-5718-05-01801-6
[4] Bai Z-Z, Benzi M, Chen F: Modified HSS iteration methods for complex symmetric linear systems. Computing 87, 93–111 (2010) · Zbl 1210.65074 · doi:10.1007/s00607-010-0077-0
[5] Bai Z-Z, Benzi M, Chen F: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algor. 56, 297–317 (2011) · Zbl 1209.65037 · doi:10.1007/s11075-010-9441-6
[6] Bai Z-Z, Golub GH, Ng MK: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003) · Zbl 1036.65032 · doi:10.1137/S0895479801395458
[7] Bai, Z-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with application to distributed control problems. IMA J. Numer. Anal. 33(1):343–369 (2013) · Zbl 1271.65100
[8] Benzi M, Golub GH, Liesen J: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005) · Zbl 1115.65034 · doi:10.1017/S0962492904000212
[9] Benzi M, Bertaccini D: Block preconditioning of real-valued iterative algorithms for complex linear systems. IMA J. Numer. Anal. 28, 598–618 (2008) · Zbl 1145.65022 · doi:10.1093/imanum/drm039
[10] Bertaccini D: Efficient solvers for sequences of complex symmetric linear systems. Electr. Trans. Numer. Anal. 18, 49–64 (2004) · Zbl 1066.65048
[11] Betts, J.T.: Practical Methods For Optimal Control Using Nonlinear Programming. SIAM, Philadelphia, (2001) · Zbl 0995.49017
[12] Feriani A, Perotti F, Simoncini V: Iterative system solvers for the frequency analysis of linear mechanical systems. Comput. Methods Appl. Mech. Eng. 190, 1719–1739 (2000) · Zbl 0981.70005 · doi:10.1016/S0045-7825(00)00187-0
[13] Frommer, A., Lippert, T., Medeke, B., Schilling, K.: Numerical challenges in lattice quantum chromodynamics, Lecture notes in computational science and engineering. Springer, Heidelberg, 15 (2000) · Zbl 0957.00052
[14] Poirier B: Efficient preconditioning scheme for block partitioned matrices with structured sparsity. Numer. Linear Algebra Appl. 7, 715–726 (2000) · Zbl 1051.65059 · doi:10.1002/1099-1506(200010/12)7:7/8<715::AID-NLA220>3.0.CO;2-R
[15] van Dijk, W., Toyama, F.M.: Accurate numerical solutions of the time-dependent Schrodinger equation. Phys. Rev. E, 75, 036707 (2007)
[16] Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York, (1971) · Zbl 0231.65034
[17] Zhou Y-Y, Zhang G-F: A generalization of parameterized inexact Uzawa method for generalized saddle point problems. Appl. Math. Comput. 215, 599–607 (2009) · Zbl 1173.65318 · doi:10.1016/j.amc.2009.05.036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.