×

A new proposal to solve the autocorrelation problem for monitoring processes in the cutlery industry. (English) Zbl 1302.62292

Summary: Traditional multivariate control charts consider the observations to be independent. In many industrial applications, however, a certain autocorrelation level can normally be observed. This can be due to the nature of the process itself (inertia in the process), or to the way in which the sample is obtained. In the latter case, the problem involved in the autocorrelation existence was treated by the individual modelling of each series or the application of vector autoregression (VAR) models. In the former case, the analysis of the cross correlation structure between the variables is altered. In the latter one, if the cross correlation is not strong, the filtering process may modify the weakest relations. In order to improve these aspects, state-space models have been introduced into multivariate statistical process control. In the present paper, we consider a cutlery industry in order to develop a complete scheme for the efficient construction of control charts for innovations and the “inertial factor”. This is the main difference from other proposals in the literature; that is, consideration of the inertial factor in the statistical process control.

MSC:

62P30 Applications of statistics in engineering and industry; control charts
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
Full Text: DOI

References:

[1] Alfaro, J.L.: Control estadístico de la calidad en procesos multivariantes autocorrelacionados. Una aplicación en la industria cuchillera de Albacete. Tesis Doctoral. Universidad de Castilla-La Mancha (2005)
[2] Alwan L.C., Roberts H.V.: Time-series modelling for statistical process control. J. Bus. Econ. Stat. 6, 87–95 (1988)
[3] Aoki, M.: State-space modelling of time series. Springer, New York (1987) · Zbl 0606.62102
[4] Bartlett M.S.: A note on tests of significance in multivariate analysis. Proc. Cambridge Phil. Soc. 35, 180–185 (1939) · Zbl 0023.34205 · doi:10.1017/S0305004100020880
[5] Bauer D., Wagner M.: Estimating cointegrated systems using subspace algorithms. J. Econom. 111, 47–84 (2002) · Zbl 1031.62069 · doi:10.1016/S0304-4076(02)00119-7
[6] Dyer J.N., Connerly M.D., Adams B.M.: A simulation study and evaluation of multivariate forecast based control charts applied to ARMA processes. J. Stat. Comput. Simul. 73, 709–724 (2003) · Zbl 1042.62089 · doi:10.1080/0094965031000062168
[7] García, A.: Identificación de Modelos para Series Temporales mediante Métodos de Subespacios. Tesis Doctoral. Universidad Complutense de Madrid. http://www.ucm.es/BUCM/tesis/cee/ucm-t28292.pdf (2005). Accessed 4 December 2010
[8] Jarrett J., Pan X.: Monitoring variability and analyzing multivariate autocorrelated processes. J. Appl. Stat. 34(4), 459–469 (2007) · Zbl 1157.62078 · doi:10.1080/02664760701231849
[9] Jarrett J., Pan X.: The quality control chart for monitoring multivariate autocorrelated processes. Comput. Stat. Data Anal. 51(8), 3862–3870 (2007) · Zbl 1161.62457 · doi:10.1016/j.csda.2006.01.020
[10] Jiang W.: Average run length computation of ARMA charts for stationary processes. Commun. Stat. Simul. Comput. 30(3), 699–716 (2001) · Zbl 1008.62724 · doi:10.1081/SAC-100105086
[11] Jiang W.: Multivariate control charts for monitoring autocorrelated processes. J. Qual. Technol. 36, 367–379 (2004)
[12] Kalgonda A.A., Kulkarni S.R.: Multivariate quality control chart for autocorrelated processes. J. Appl. Stat. 31, 317–327 (2004) · Zbl 1121.62407 · doi:10.1080/0266476042000184000
[13] Kalman R.E.: A New approach to linear filtering and prediction problems. J. Basic Eng. Trans. ASME Ser. D 82, 35–45 (1960) · doi:10.1115/1.3662552
[14] Lee J.H., Dorsey A.W.: Monitoring of batch processes through state-space models. AIChE J. 50(6), 1198–1210 (2004) · doi:10.1002/aic.10114
[15] Lu C.W., Reynolds M.R.: Control charts for monitoring the mean and variance of autocorrelated processes. J. Qual. Technol. 31, 259–274 (1999)
[16] Mondéjar, J., Vargas, M.: Análisis de tendencias comunes y cointegración en espacio de estados. Contribuciones a la Economía, September. http://www.eumed.net/ce/ (2006). Accessed 4 December 2010
[17] Montgomery D.C., Mastrangelo C.M.: Some statistical process control methods for autocorrelated data. J. Qual. Technol. 23, 179–204 (1991)
[18] Noorossana R., Vaghefi S.J.M.: Effect of autocorrelation on performance of the MCUSUM control chart. Qual. Reliab. Eng. Int. 2(2), 191–197 (2006) · doi:10.1002/qre.695
[19] Pan X., Jarrett J.: Applying state-space into SPC: monitoring multivariate time series. J. Appl. Stat. 31(4), 397–418 (2004) · Zbl 1121.62460 · doi:10.1080/02664760410001681701
[20] Pan X., Jarrett J.: Using vector autoregressive residuals to monitor multivariate processes in the presence of serial correlation. Int. J. Prod. Econ. 106(1), 204–216 (2007) · doi:10.1016/j.ijpe.2006.07.002
[21] Triantafyllopoulos K.: Multivariate control charts based on Bayesian state-space models. Qual. Reliab. Eng. Int. 22, 693–707 (2006) · doi:10.1002/qre.807
[22] Vargas M., Alfaro J.L., Mondéjar J.: On the run length of a state-space control chart for multivariate autocorrelated data. Commun. Stat. Simul. Comput. 38(9), 1823–1833 (2009a) · Zbl 1186.62141 · doi:10.1080/03610910903147771
[23] Vargas, M., Mondéjar, J., Meseguer, M.L.: State-space representation of economic time series. VDM Verlag Dr. Müller Aktiengesellschaft & Co., Saarbrücken (2009b)
[24] West D., Jarrett J.: The impact of first order positive autoregression on process control. Int. J. Bus. Econ. 3(1), 29–37 (2004)
[25] Xie L., Zhang J., Wang S.: Investigation of dynamic multivariate chemical process monitoring. Chin. J. Chem. Eng. 14(5), 559–568 (2006) · doi:10.1016/S1004-9541(06)60116-X
[26] Zantek P., Li S., Chen Y.: Detecting multiple special causes from multivariate data with applications to fault detection in manufacturing. IIE Trans. 39(8), 771–782 (2007) · doi:10.1080/07408170601089513
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.