×

Joint chance constrained programming for hydro reservoir management. (English) Zbl 1364.90232

Summary: In this paper, we deal with a cascaded reservoir optimization problem with uncertainty on inflows in a joint chance constrained programming setting. In particular, we will consider inflows with a persistency effect, following a causal time series model with Gaussian innovations. We present an iterative algorithm for solving similarly structured joint chance constrained programming problems that requires a Slater point and the computation of gradients. Several alternatives to the joint chance constraint problem are presented. In particular, we present an individual chance constraint problem and a robust model. We illustrate the interest of joint chance constrained programming by comparing results obtained on a realistic hydro valley with those obtained from the alternative models. Despite the fact that the alternative models often require less hypothesis on the law of the inflows, we show that they yield conservative and costly solutions. The simpler models, such as the individual chance constraint one, are shown to yield insufficient robustness and are therefore not useful. We therefore conclude that Joint Chance Constrained programming appears as an approach offering a good trade-off between cost and robustness and can be tractable for complex realistic models.

MSC:

90C15 Stochastic programming
90C90 Applications of mathematical programming

Software:

QSIMVN; astsa
Full Text: DOI

References:

[1] Andrieu L, Henrion R, Römisch W (2010) A model for dynamic chance constraints in hydro power management. Eur J Oper Res 207:579-589 · Zbl 1205.90145 · doi:10.1016/j.ejor.2010.05.013
[2] Belloni A, Diniz AL, Maceira ME, Sagastizábal C (2003) Bundle relaxation and primal recovery in unit-commitment problems. The Brazilian case. Ann Oper Res 120(1-4):21-44 · Zbl 1038.90535 · doi:10.1023/A:1023314026477
[3] Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton · Zbl 1221.90001
[4] Charnes A, Cooper W (1960) Chance-constrained programming. Manag Sci 6:73-79 · Zbl 0995.90600 · doi:10.1287/mnsc.6.1.73
[5] Cohen, G.; Zhu, DL, Decomposition-coordination methods in large-scale optimization problems. The non-differentiable case and the use of augmented Lagrangians, No. 1 (1983)
[6] d’Ambrosio C, Lodi A, Martello S (2010) Piecewise linear approximation of functions of two variables in Milp models. Oper Res Lett 38:39-46 · Zbl 1182.90064 · doi:10.1016/j.orl.2009.09.005
[7] Farias, DP; Roy, B., Approximate dynamic programming via linear programming, No. 14 (2002)
[8] Diniz AL, Maceira MEP (2008) A four-dimensional model of hydro generation for the short-term hydrothermal dispatch problem considering head and spillage effects. IEEE Trans Power Syst 23(3):1298-1308 · doi:10.1109/TPWRS.2008.922253
[9] Dubost L, Gonzalez R, Lemaréchal C (2005) A primal-proximal heuristic applied to French unitcommitment problem. Math Program 104(1):129-151 · Zbl 1077.90083 · doi:10.1007/s10107-005-0593-4
[10] Duranyildiz I, Önöz B, Bayazit M (1999) A chance-constrained LP model for short term reservoir operation optimization. Turk J Eng 23:181-186
[11] Edirisinghe NCP, Patterson EI, Saadouli N (2000) Capacity planning model for a multipurpose water reservoir with target-priority operation. Ann Oper Res 100:273-303 · Zbl 1017.90069 · doi:10.1023/A:1019200623139
[12] Finardi EC, Da Silva EL (2006) Solving the hydro unit commitment problem via dual decomposition and sequential quadratic programming. IEEE Trans Power Syst 21(2):835-844 · doi:10.1109/TPWRS.2006.873121
[13] Genz A (1992) Numerical computation of multivariate normal probabilities. J Comput Graph Stat 1:141-149
[14] Girardeau P (2010) Résolution de grands problèmes en optimisation stochastique dynamique et synthèse de lois de commande. PhD thesis, Université Paris Est
[15] Gouda A, Szántai T (2010) On numerical calculation of probabilities according to Dirichlet distribution. Ann Oper Res 177:185-200 · Zbl 1202.60027 · doi:10.1007/s10479-009-0601-9
[16] Henrion R, Möller A (2012) A gradient formula for linear chance constraints under Gaussian distribution. Math Oper Res 37:475-488 · Zbl 1297.90095 · doi:10.1287/moor.1120.0544
[17] Lemaréchal, C.; Sagastizábal, C., An approach to variable metric bundle methods, No. 197, 144-162 (1994), Berlin · Zbl 0811.90085
[18] Loiaciga HA (1988) On the use of chance constraints in reservoir design and operation modeling. Water Resour Res 24:1969-1975 · doi:10.1029/WR024i011p01969
[19] Loucks DP, Stedinger JR, Haith DA (1981) Water resource systems planning and analysis. Prentice-Halls, New York
[20] Morgan DR, Eheart JW, Valocchi AJ (1993) Aquifer remediation design under uncertainty using a new chance constraint programming technique. Water Resour Res 29:551-561 · doi:10.1029/92WR02130
[21] Nilsson O, Sjelvgren D (1997) Variable splitting applied to modelling of start-up costs in short term hydro generation scheduling. IEEE Trans Power Syst 12(2):770-775 · doi:10.1109/59.589678
[22] Pereira MVF, Pinto LMVG (1991) Multi-stage stochastic optimization applied to energy planning. Math Program 52(2):359-375 · Zbl 0749.90057 · doi:10.1007/BF01582895
[23] Philpott AB, Dallagi A, Gallet E (2011) On cutting plane algorithms and dynamic programming for hydroelectricity generation. Available online at http://www.epoc.org.nz/papers/MORGANEvsDOASA.pdf, pp 1-20
[24] Philpott AB, Guan Z (2008) On the convergence of stochastic dual dynamic programming and related methods. Oper Res Lett 36(4):450-455 · Zbl 1155.90437 · doi:10.1016/j.orl.2008.01.013
[25] Ponrajah RA, Witherspoon J, Galiana FD (1998) Systems to optimise conversion efficiencies at Ontario hydro’s hydroelectric plants. IEEE Trans Power Syst 13(3):1044-1050 · doi:10.1109/59.709097
[26] Prékopa A (1995) Stochastic programming. Kluwer, Dordrecht · Zbl 0863.90116 · doi:10.1007/978-94-017-3087-7
[27] Prékopa A, Szántai T (1978a) Flood control reservoir system design using stochastic programming. Math Program Stud 9:138-151 · Zbl 0385.90073 · doi:10.1007/BFb0120831
[28] Prékopa A, Szántai T (1978b) A new multivariate gamma distribution and its fitting to empirical streamflow data. Water Resour Res 14:19-24 · doi:10.1029/WR014i001p00019
[29] Prokhorov YV, Statulevičius V (eds) (2000) Limit theorems of probability theory. Springer, Berlin · Zbl 0945.00013
[30] Shumway RH, Stoffer DS (2000) Time series analysis and its applications, 1st edn. Springer, Berlin · Zbl 0942.62098 · doi:10.1007/978-1-4757-3261-0
[31] Szántai T (1985) Numerical evaluation of probabilities concerning multi-dimensional probability distributions. PhD thesis, Hungarian Academy of Sciences
[32] Szántai, T.; Ermoliev, Y. (ed.); Wets, RJ-B (ed.), A computer code for solution of probabilistic-constrained stochastic programming problems, 229-235 (1988) · Zbl 0662.90059 · doi:10.1007/978-3-642-61370-8_10
[33] Torrion P, Leveugle J (1985) Comparaison de différentes méthodes d’optimisation appliquées à la gestion annuelle du système offre-demande d’électricité français. M.85.108, p 20 · Zbl 1218.90229
[34] Turgeon A (1980) Optimal operation of multi-reservoir power systems with stochastic inflows. Water Resour Res 16(2):275-283 · doi:10.1029/WR016i002p00275
[35] van Ackooij W, Henrion R, Möller A, Zorgati R (2010) On probabilistic constraints induced by rectangular sets and multivariate normal distributions. Math Methods Oper Res 71(3):535-549 · Zbl 1198.90309 · doi:10.1007/s00186-010-0316-3
[36] Veinott AF (1967) The supporting hyperplane method for unimodal programming. Oper Res 15:147-152 · Zbl 0147.38604 · doi:10.1287/opre.15.1.147
[37] Zorgati R, van Ackooij W (2011) Optimizing financial and physical assets with chance-constrained programming in the electrical industry. Optim Eng 12(1):237-255 · Zbl 1218.90229 · doi:10.1007/s11081-010-9113-3
[38] Zorgati R, van Ackooij W, Apparigliato R (2009) Supply shortage hedging: estimating the electrical power margin for optimizing financial and physical assets with chance-constrained programming. IEEE Trans Power Syst 24(2):533-540 · doi:10.1109/TPWRS.2009.2016586
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.