×

Classical-operation-based deterministic secure quantum communication. (English) Zbl 1298.81058

Summary: We generalize the unitary-operation-based deterministic secure quantum communication (UODSQC) model (protocol) to describe the conventional deterministic secure quantum communication (DSQC) protocols in which unitary operations are usually utilized for encoding or decoding message. However, it is found that unitary operation for message encoding or decoding is not required and can be replaced with classical operation in DSQC. So the classical-operation-based deterministic secure quantum communication (CODSQC) model (protocol) is put forward. Then the rigorous mathematical analysis to explain the reason why classical operations can replace unitary operations to encode or decode secret deterministic message is given. Although unitary operations are still possibly needed in the whole communication of CODSQC model (protocol), those used for message encoding or decoding are omitted and replaced with classical operations in CODSQC model (protocol). As a result, the CODSQC model (protocol) is simpler and even more robust than the UODSQC one.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
94A17 Measures of information, entropy
Full Text: DOI

References:

[1] Bennett, C. H.; Brassard, G., Quantum cryptography: public key distribution and coin tossing, Bangalore, India
[2] Gisin, N., Ribordy, G.G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145-195 (2002) · Zbl 1371.81006 · doi:10.1103/RevModPhys.74.145
[3] Long, G.L., Deng, F.G., Wang, C., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251-272 (2007) · doi:10.1007/s11467-007-0050-3
[4] Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002) · doi:10.1103/PhysRevA.65.032302
[5] Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002) · doi:10.1103/PhysRevLett.89.187902
[6] Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003) · doi:10.1103/PhysRevA.68.042317
[7] Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004) · doi:10.1103/PhysRevA.69.052319
[8] Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005) · doi:10.1103/PhysRevLett.94.140501
[9] Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005) · doi:10.1103/PhysRevA.71.044305
[10] Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253(1-3), 15-20 (2005) · doi:10.1016/j.optcom.2005.04.048
[11] Li, X.H., Li, C.Y., Deng, F.G., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149-2153 (2007) · doi:10.1088/1009-1963/16/8/001
[12] Lin, S., Wen, Q.Y., Gao, F., et al.: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A 78(6), 064304 (2008) · doi:10.1103/PhysRevA.78.064304
[13] Chamoli, A., Bhandari, C.M.: Secure direct communication based on ping-pong protocol. Quantum Inf. Process. 8(4), 347-356 (2009) · Zbl 1181.81030 · doi:10.1007/s11128-009-0112-2
[14] Dong, L., Dong, H.K., Xiu, X.M., et al.: Quantum secure direct communication using a six-qubit maximally entangled state with dense coding. Int. J. Quantum Inf. 7(3), 645-651 (2009) · Zbl 1172.81306 · doi:10.1142/S021974990900533X
[15] Xiu, X.M., Dong, L., Gao, Y.J., et al.: Quantum secure direct communication with four-particle genuine entangled state and dense coding. Commun. Theor. Phys. 52(1), 60-62 (2009) · Zbl 1170.81342 · doi:10.1088/0253-6102/52/1/13
[16] Cao, W.F., Yang, Y.G., Wen, Q.Y.: Quantum secure direct communication with cluster states. Sci. China, Phys. Mech. Astron. 53(7), 1271-1275 (2010) · doi:10.1007/s11433-010-3210-3
[17] Liu, Z.H., Chen, H.W., Liu, W.J., et al.: Analyzing and revising a two-way protocol for quantum cryptography with a nonmaximally entangled qubit pair. Int. J. Quantum Inf. 9(5), 1329-1339 (2011) · Zbl 1229.81067 · doi:10.1142/S0219749911007885
[18] Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61(3), 779-783 (2011) · doi:10.1140/epjd/e2010-10189-8
[19] Wang, T.J., Li, T., Du, F.F., et al.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011) · doi:10.1088/0256-307X/28/4/040305
[20] Yang, Y.G., Chai, H.P., Teng, Y.W., et al.: Improving the security of controlled quantum secure direct communication by using four particle cluster states against an attack with fake entangled particles. Int. J. Theor. Phys. 50(2), 395-400 (2011) · Zbl 1209.81088 · doi:10.1007/s10773-010-0543-7
[21] Liu, Z.H., Chen, H.W., Liu, W.J., et al.: Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states. Quantum Inf. Process. 12(1), 587-599 (2013) · Zbl 1277.94032 · doi:10.1007/s11128-012-0404-9
[22] Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52(6), 1914-1924 (2013) · Zbl 1360.93346 · doi:10.1007/s10773-012-1311-7
[23] Beige, A., Englert, B.G., Kurtsiefer, C., et al.: Secure communication with a publicly known key. Acta Phys. Pol. A 101(3), 357-368 (2002)
[24] Gao, T., Yan, F.L., Wang, Z.X.: Quantum secure direct communication by EPR pairs and entanglement swapping. Nuovo Cimento B 119(3), 313-318 (2004)
[25] Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41(1), 75-78 (2004) · doi:10.1140/epjb/e2004-00296-4
[26] Zhang, Z.J., Man, Z.X., Li, Y.: The improved Bostrom-Felbinger protocol against attacks without eavesdropping. Int. J. Quantum Inf. 2(4), 521-527 (2004) · doi:10.1142/S0219749904000912
[27] Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22(1), 18-21 (2005) · doi:10.1088/0256-307X/22/1/006
[28] Li, X.H., Deng, F.G., Li, C.Y., et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49(4), 1354-1359 (2006)
[29] Wang, G.Y., Fang, X.M., Tan, X.H.: Quantum secure direct communication with cluster state. Chin. Phys. Lett. 23(10), 2658-2661 (2006) · doi:10.1088/0256-307X/23/10/010
[30] Yuan, H., He, Q., Hu, X.Y., et al.: Deterministic secure quantum communication with cluster state and Bell-basis measurements. Commun. Theor. Phys. 50(5), 1105-1108 (2008) · Zbl 1392.81107 · doi:10.1088/0253-6102/50/5/19
[31] Liu, W.J., Chen, H.W., Ma, T.H., et al.: An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chin. Phys. B 18(10), 4105-4109 (2009) · doi:10.1088/1674-1056/18/10/007
[32] Xiu, X.M., Dong, H.K., Dong, L., et al.: Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt. Commun. 282(12), 2457-2459 (2009) · doi:10.1016/j.optcom.2009.02.054
[33] Yuan, H., Song, J., Hu, X.Y., et al.: An efficient deterministic secure quantum communication scheme with cluster state. Int. J. Quantum Inf. 7(3), 689-696 (2009) · Zbl 1170.81346 · doi:10.1142/S0219749909004530
[34] Zhan, Y.B., Zhang, L.L., Zhang, Q.Y.: Quantum secure direct communication by entangled qutrits and entanglement swapping. Opt. Commun. 282(23), 4633-4636 (2009) · doi:10.1016/j.optcom.2009.08.024
[35] Qin, S.J., Gao, F., Wen, Q.Y., et al.: Improving the quantum secure direct communication by entangled qutrits and entanglement swapping against intercept-and-resend attack. Opt. Commun. 283(7), 1566-1568 (2010) · doi:10.1016/j.optcom.2009.11.087
[36] Quan, D.X., Pei, C.X., Liu, D., et al.: One-way deterministic secure quantum communication protocol based on single photons. Acta Phys. Sin. 59(4), 2493-2497 (2010)
[37] Liu, Z.H., Chen, H.W., Liu, W.J., et al.: Deterministic secure quantum communication without unitary operation based on high-dimensional entanglement swapping. Sci. China, Ser. F, Inf. Sci. 55(2), 360-367 (2012) · doi:10.1007/s11432-011-4371-z
[38] Zhang, Q.N., Li, C.C., Li, Y.H., et al.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52(1), 22-27 (2013) · Zbl 1264.81162 · doi:10.1007/s10773-012-1294-4
[39] Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006) · doi:10.1103/PhysRevA.74.054302
[40] Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256-258 (2006) · Zbl 1142.81342 · doi:10.1016/j.physleta.2006.05.035
[41] Zhu, A.D., Xia, Y., Fan, Q.B., et al.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73(2), 022338 (2006) · doi:10.1103/PhysRevA.73.022338
[42] Wang, J., Zhang, Q., Tang, C.J.: Erratum to: “Quantum secure direct communication based on order rearrangement of single photons” [Phys. Lett. A 358 (2006) 256]. Phys. Lett. A 368(6), 504 (2006) · Zbl 1142.81342 · doi:10.1016/j.physleta.2007.03.002
[43] Wang, C., Hao, L., Song, S.Y., et al.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8(3), 443-450 (2010) · Zbl 1191.81069 · doi:10.1142/S0219749910006071
[44] Yuan, H., Song, J., Liu, X.Y., et al.: Deterministic secure quantum communication with four-qubit W states. Int. J. Quantum Inf. 9(1), 607-614 (2011) · Zbl 1214.81069 · doi:10.1142/S0219749911006879
[45] Yuan, H., Song, J., Zhou, J., et al.: High-capacity deterministic secure four-qubit W state protocol for quantum communication based on order rearrangement of particle pairs. Int. J. Theor. Phys. 50(8), 2403-2409 (2011) · Zbl 1228.81146 · doi:10.1007/s10773-011-0729-7
[46] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, pp. 216-247. Higher Education Press, Beijing (2000) · Zbl 1049.81015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.