×

Description of interacting channel gating using a stochastic Markovian model. (English) Zbl 0853.92005

Summary: Single-channel recordings from membrane patches frequently exhibit multiple conductance levels. In some preparations, the steady-state probabilities of observing these levels do not follow a binomial distribution. This behavior has been reported in sodium channels, potassium channels, acetylcholine receptor channels and gap junction channels. A nonbinomial distribution suggests interaction of the channels or the presence of channels with different open probabilities. However, the current trace sometimes exhibits single transitions spanning several levels. Since the probability of simultaneous transitions of independent channels is infinitesimally small, such observations strongly suggest a cooperative gating behavior.
We present a Markov model to describe the cooperative gating of channels using only the all-points current amplitude histograms for the probability of observing the various conductance levels. We investigate the steady-state (or equilibrium) properties of a system of \(N\) channels and provide a scheme to express all the probabilities in terms of just two parameters. The main feature of our model is that lateral interaction of channels gives rise to cooperative gating. Another useful feature is the introduction of the language of graph theory which can potentially provide a different avenue to study ion channel kinetics. We write down explicit expressions for systems of two, three and four channels and provide a procedure to describe the system of \(N\) channels.

MSC:

92C30 Physiology (general)
05C90 Applications of graph theory
92C05 Biophysics
60J25 Continuous-time Markov processes on general state spaces
Full Text: DOI

References:

[1] Ansari, A., J. Berendzeu, S. Bowne, H. Frauenfelder, I. Ibeu, T. Sanke, E. Shyamsunder and R. Young. 1985. Protein states and protein quakes.Proc. Natl. Acad. Sci. U.S.A. 82 5000–5004. · doi:10.1073/pnas.82.15.5000
[2] Bezanilla, F., E. Perozo, D. M. Papazian and E. Stefani. 1991. Molecular basis of gating charge immobolization in shaker potassium channels.Science 254, 679–683. · doi:10.1126/science.1948047
[3] Brink, P. R. and S-F. Fan. 1989. Patch clamp recordings from membranes which contain gap junction channels.Biophys. J. 56, 579–593. · doi:10.1016/S0006-3495(89)82705-5
[4] Clay, J. R. and L. J. DeFelice. 1983. Relationship between membrane excitability and single channel open-close recording.Biophys. J.,42, 151–157. · doi:10.1016/S0006-3495(83)84381-1
[5] Colquhoun, D. and A. G. Hawkes. 1977. Relaxation and fluctuations of membrane currents that flow through drug-operated ion channels.Proc. Roy. Soc. London Ser. B 199, 231–262. · doi:10.1098/rspb.1977.0137
[6] Colquhoun, D. and A. G. Hawkes. 1982. On the stochastic properties of bursts of single ion channel openings and of clusters of bursts.Phil. Trans. Roy. Soc. London Ser. B 300, 1–59. · doi:10.1098/rstb.1982.0156
[7] Colquhoun, D. and A. G. Hawkes. 1987. A note on correlations in single ion channel records.Proc. Roy. Soc. London Ser. B 230, 15–52. · doi:10.1098/rspb.1987.0008
[8] Colquhoun, D. and A. G. Hawkes. 1990. Stochastic properties of ion channel openings and bursts in a membrane patch that contains two channels: evidence concerning the number of channels present when a record containing only single openings is observed.Proc. Roy. Soc. London Ser. B 240, 453–477. · doi:10.1098/rspb.1990.0048
[9] Draber, S., R. Schultze and U.-P. Hansen. 1993. Cooperative behavior ofK + channels in the tonoplast ofChara corallina.Biophys. J. 65, 1553–1559. · doi:10.1016/S0006-3495(93)81194-9
[10] Edeson, R. D., G. F. Yeo, R. K. Milne and B. W. Madson. 1990. Graphs random sums and sojourn time distributions with application to ion-channel modeling.Math. Biosci. 102, 75–104. · Zbl 0734.92010 · doi:10.1016/0025-5564(90)90056-5
[11] Fredkin, D. R., M. Montal and J. A. Rice. 1985. Identification of aggregated Markovian models: Application to the nicotinic acetylcholine receptor. InProceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, L. M. Le Cam and R. A. Olshen (Eds), Vol. 1, pp. 269–289. Belmont, CA: Wadsworth. · Zbl 1372.92028
[12] Fredkin, D. R. and J. A. Rice. 1986. On aggregated Markov process.J. Appl. Probab. 23, 208–214. · Zbl 0589.60058 · doi:10.2307/3214130
[13] Grigolini, P. and F. Marchesoni. 1985. Memory function approach to stochastic problems in condensed matter.Advances in Chemical Physics, M. W. Evans, P. Grigolini, G. Pastori Parravicini, I. Prigogine and S. A. Rice (Eds), Vol. 62. New York: Wiley.
[14] Hamill, O. P. and B. Sakmann. 1981. Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells.Nature 294, 462–464. · doi:10.1038/294462a0
[15] Harary, F. 1972.Graph Theory. Reading, MA: Addison-Wesley. · Zbl 0235.05105
[16] Hille, B. 1992.Ionic Channels of Excitable Membranes. Sunderland, MA: Sinauer.
[17] Hodgkin, A. L. and A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117, 500–544.
[18] Hoh, J. H., R. Lal, S. A. John, J.-P. Revel and M. F. Arnsdorf. 1991. Atomic force microscopy and dissection of gap junctions.Science 253, 1405–1408. · doi:10.1126/science.1910206
[19] Hoh, J. H., G. E. Sosinsky, J.-P. Revel and P. K. Hansma. 1993. Structure of the extracellular surface of the gap junction by atomic force microscopy.Biophys. J. 65, 149–163. · doi:10.1016/S0006-3495(93)81074-9
[20] Horn, R. 1991. Estimating the number of channels in patch recordings.Biophys. J. 60, 433–439. · doi:10.1016/S0006-3495(91)82069-0
[21] Horn, R. and S. Korn. 1989. Model selection: reliability and bias.Biophys. J. 55, 379–381. · doi:10.1016/S0006-3495(89)82816-4
[22] Horn, R. and K. Lange, 1983. Estimating kinetic constants from single channel data.Biophys. J. 43, 207–223. · doi:10.1016/S0006-3495(83)84341-0
[23] Horn, R. and C. A. Vandenberg. 1989. Statistical properties of single sodium channels.J. Gen. Physiol. 84, 505–534. · doi:10.1085/jgp.84.4.505
[24] Iwasa K., G. Ehrenstein, N. Moran and M. Jia. 1986. Evidence for interactions between batrachotoxin-modified channels in hybrid neuroblastoma cells.Biophys. J. 50, 531–537. · doi:10.1016/S0006-3495(86)83491-9
[25] Jackson M. B. 1985. Stochastic behavior of a many channel membrane system.Biophys. J. 47, 129–137. · doi:10.1016/S0006-3495(85)83886-8
[26] Kerry, C. J., R. L. Ramsey, M. S. P. Sansom and P. N. R. Usherwood. 1988. Glutamate receptor channel kinetics. The effect of glutamate concentration.Biophys. J. 53, 39–52. · doi:10.1016/S0006-3495(88)83064-9
[27] Kiss, T. and K. Nagy. 1985. Interactions between sodium channels in mouse neuroblastoma cells.Eur. Biophys. J. 12, 13–18. · doi:10.1007/BF00254090
[28] Liebovitch, L. S. 1989. Testing fractal and Markov models of ion channel kinetics.Biophys. J. 55, 373–377. · doi:10.1016/S0006-3495(89)82815-2
[29] Liu, Q-Y., F. A. Lai, E. Rousseau, R. V. Jones and G. Meissner. 1989. Multiple conductance states of the purified calcium release channel complex from skeletal sarcoplasmic reticulum.Biphys. J. 55, 415–424. · doi:10.1016/S0006-3495(89)82835-8
[30] Liu, Y. and J. P. Dilger. 1993. Application of the one- and two-dimensional Ising model to studies of cooperativity between ion channels.Biophys. J. 64, 26–35. · doi:10.1016/S0006-3495(93)81337-7
[31] Magleby, K. L. 1992. Preventing artifacts and reducing errors in single-channel analysis.Methods in Enzymology,207, 763–791. · doi:10.1016/0076-6879(92)07055-S
[32] Makowski, L., D. L. D. Caspar, W. C. Phillips and D. A. Goodenough. 1977. Gap junction structures II. Analysis of the X-ray diffraction data.J. Cell. Biol. 74, 629–645. · doi:10.1083/jcb.74.2.629
[33] Manivannan, K., S. V. Ramanan, R. T. Mathias and P. R. Brink, 1990. Single and multichannel recordings from gap junction membranes.Biophys. J. 57, 224A.
[34] Manivannan, K., S. V. Ramanan, R. T. Mathias and P. R. Brink. 1992. Multichannel recordings from membranes which contain gap junctions.Biophys. J. 61, 216–227. · doi:10.1016/S0006-3495(92)81828-3
[35] Mathias, R. T. and J. L. Rae. 1989. Cell to cell communication in lens. InCell Interactions and Gap Junctions, N. Sperelakis and C. C. Cole (Eds), Vol. 1, pp. 29–50. Boca Raton, FL: CRC Press.
[36] McGeoch, M. W. and J. E. McGeogh. 1994. Power spectra and cooperativity of a calcium-regulated cation channel.Biophys. J. 66, 161–168. · doi:10.1016/S0006-3495(94)80747-7
[37] McManus, O. B., C. E. Spivak, A. L. Blatz, D. S. Weiss and K. L. Magleby. 1989. Fractal models, markov models, and channel kinetics.Biophys. J. 55, 383–385. · doi:10.1016/S0006-3495(89)82817-6
[38] McManus, O. B. and K. L. Magleby. 1989. Kinetic time constants independent of previous single-channel activity suggest Markov gating for a large conductance Ca-activatesK channel.J. Gen. Physiol. 94, 1037–1070. · doi:10.1085/jgp.94.6.1037
[39] Monod, J., J. Wyman and J.-P. Changeux. 1965. On the nature of allosteric transitions: a sensible model.J. Mol. Biol. 12, 88–118. · doi:10.1016/S0022-2836(65)80285-6
[40] Neher, E. and B. Sakmann. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres.Nature 260, 799–801. · doi:10.1038/260799a0
[41] Neumcke, B. and R. Stampfli. 1983. Alteration of the conductance of Na+ channels in the nodal membrane of frog nerve by holding potential and tetrodotoxin.Biochem. Biophys. Acta 272, 177–184.
[42] Pallota, B. S. 1985. Calcium-activated potassium channels in rat muscle inactivate from a short-duration open state.J. Physiol. (London) 363, 501–516.
[43] Patlak, J. and R. Horn. 1982. The effect ofN-bromoacetamide on single sodium channel currents in excised membrane patches.J. Gen. Physiol. 79, 333–351. · doi:10.1085/jgp.79.3.333
[44] Pauling, L. 1935. The oxygen equilibrium of hemoglobin and its structural interpretation.Proc. Natl. Acad. Sci. U.S.A. 21, 186–191. · doi:10.1073/pnas.21.4.186
[45] Ramanan, S. V., K. Manivannan, R. T. Mathias and P. R. Brink. 1993. Evidence for heterogeneous channel behavior in gap junctions. InProgress in Cell Research, J. E. Hall, G. A. Zampighi and R. M. Davis, Eds. Vol. 3, pp. 121–125. Amsterdam: Elservier.
[46] Richard, E. A. and C. Miller. 1990. Steady-state coupling of ion-channel conformations to a transmembrane ion gradient.Science 247, 1208–1210. · doi:10.1126/science.2156338
[47] Sakmann, B. and E. Neher (Eds). 1983.Single-Channel Recordings. New York: Plenum Press.
[48] Steinberg, I. Z. 1987. Relationship between statistical properties of single ionic channel recordings and the thermodynamic state of the channels.J. Theor. Biol. 124, 71–87. · doi:10.1016/S0022-5193(87)80253-9
[49] Tytgat, J. and P. Hess. 1992. Evidence for cooperative interactions in potassium channel gating.Nature 359, 420–423. · doi:10.1038/359420a0
[50] Tytgat, J., K. Nakazawa and P. Hess. 1993. Cooperative and non-cooperative subunit interactions determine voltage-dependentK + channel gating.Biophys. J. 64, A226.
[51] Unwin, P. N. T. and G. Zampighi. 1980. Structure of the gap junction between communicating cells.Nature,283, 545–549. · doi:10.1038/283545a0
[52] Yeramian, E., A. Trautmann and P. Claverie. 1986. Acetylcholine receptors are not functionally independent.Biophys. J. 50, 253–263. · doi:10.1016/S0006-3495(86)83459-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.