×

Spectral asymmetry of the massless Dirac operator on a 3-torus. (English) Zbl 1288.81032

Let \(\mathbb{T}^3\) be the unit torus parameterized by cyclic coordinates \(x^\alpha\), \(\alpha=1,2,3\), of period \(2\pi\) with Euclidean metric. The massless Dirac operator corresponding to the standard spin structure reads \[ W= -i \begin{pmatrix} \frac\partial{\partial x^3}&\frac\partial{\partial x^1}-i\frac\partial{\partial x^2} \\ \frac\partial{\partial x^1}+i\frac\partial{\partial x^2}&-\frac\partial{\partial x^3} \end{pmatrix}. \] Spectrum of the operator \(W\) is symmetric about zero and zero is an eigenvalue of multiplicity two.
The authors of the paper under review perturb the metric, i.e. consider a metric \(g_{\alpha\beta}(x;\varepsilon)\) the components of which are smooth functions of coordinates \(x^\alpha\), \(\alpha=1,2,3\), and small real parameter \(\varepsilon\), and which satisfies \(g_{\alpha\beta}(x;0)=\delta_{\alpha\beta}\). The main result is asymptotic formula for the eigenvalue with smallest modulus \(\lambda_0\) for arbitrary perturbations of the metric: \[ \lambda_0(\varepsilon)=c\,\varepsilon^2+O(\varepsilon^3) \quad\text{as}\quad\varepsilon\to 0, \] where constant \(c\) calculated explicitly. If the constant \(c\) is nonzero, then this formula tells us that for sufficiently small nonzero \(\varepsilon\) the spectrum of massless Dirac operator is asymmetric about zero.
Two particular families of Riemannian metrics for which the eigenvalue with smallest modulus can be evaluated explicitly are presented. A relation between asymptotic formula and the eta invariant is also established.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
81Q15 Perturbation theories for operators and differential equations in quantum theory
35B40 Asymptotic behavior of solutions to PDEs
35Q40 PDEs in connection with quantum mechanics
58J28 Eta-invariants, Chern-Simons invariants

References:

[1] Ammann, B.; Dahl, M.; Humbert, E., Surgery and harmonic spinors, Adv. Math., 220, 523-539 (2009) · Zbl 1159.53021 · doi:10.1016/j.aim.2008.09.013
[2] Ammann, B.; Dahl, M.; Humbert, E., Harmonic spinors and local deformations of the metric, Math. Res. Lett., 18, 927-936 (2011) · Zbl 1257.53077 · doi:10.4310/MRL.2011.v18.n5.a10
[3] Atiyah, M. F.; Donnelly, H.; Singer, I. M., Eta invariants, signature defects of cusps, and values of L-functions, Ann. Math., 118, 131-177 (1983) · Zbl 0531.58048 · doi:10.2307/2006957
[4] Atiyah, M. F.; Patodi, V. K.; Singer, I. M., Spectral asymmetry and Riemannian geometry, Bull. London Math. Soc., 5, 229-234 (1973) · Zbl 0268.58010 · doi:10.1112/blms/5.2.229
[5] Atiyah, M. F.; Patodi, V. K.; Singer, I. M., Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc., 77, 43-69 (1975) · Zbl 0297.58008 · doi:10.1017/S0305004100049410
[6] Atiyah, M. F.; Patodi, V. K.; Singer, I. M., Spectral asymmetry and Riemannian geometry II, Math. Proc. Cambridge Philos. Soc., 78, 405-432 (1975) · Zbl 0314.58016 · doi:10.1017/S0305004100051872
[7] Atiyah, M. F.; Patodi, V. K.; Singer, I. M., Spectral asymmetry and Riemannian geometry III, Math. Proc. Cambridge Philos. Soc., 79, 71-99 (1976) · Zbl 0325.58015 · doi:10.1017/S0305004100052105
[8] Bär, C., On harmonic spinors, Acta Phys Pol. B, 29, 859-869 (1998) · Zbl 1010.58016
[9] Bismut, J.-M.; Freed, D. S., The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem, Commun. Math. Phys., 107, 103-163 (1986) · Zbl 0657.58038 · doi:10.1007/BF01206955
[10] Chervova, O.; Downes, R. J.; Vassiliev, D., The spectral function of a first order elliptic system, J. Spectral Theory, 3, 317-360 (2013) · Zbl 1346.35136 · doi:10.4171/JST/47
[11] Chervova, O., Downes, R. J., and Vassiliev, D., “Spectral theoretic characterization of the massless Dirac operator,” J. Lond. Math. Soc. (to be published), Preprint at . · Zbl 1317.35157
[12] Erdős, L.; Solovej, J. P., The kernel of Dirac operators on \documentclass[12pt]{minimal}\( \begin{document}\mathbb{S}^3\end{document}\) and \documentclass[12pt]{minimal}\( \begin{document}\mathbb{R}^3\end{document} \), Rev. Math. Phys., 13, 1247-1280 (2001) · Zbl 1064.58027 · doi:10.1142/S0129055X01000983
[13] Gilkey, P. B., The residue of the global η function at the origin, Adv. Math., 40, 290-307 (1981) · Zbl 0469.58015 · doi:10.1016/S0001-8708(81)80007-2
[14] Grubb, G., Analysis of invariants associated with spectral boundary problems for elliptic operators, Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds, 366, 43-64 (2005) · Zbl 1077.58014
[15] Grubb, G.; Booss-Bavnbek, B.; Klimek, S.; Lesch, M.; Zhang, W., Remarks on nonlocal trace expansion coefficients, Analysis, Geometry and Topology of Elliptic Operators, 215-234 (2006) · Zbl 1119.58019
[16] Grubb, G.; Seeley, R. T., Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems, Invent. Math., 121, 481-529 (1995) · Zbl 0851.58043 · doi:10.1007/BF01884310
[17] Grubb, G.; Seeley, R. T., Zeta and eta functions for Atiyah-Patodi-Singer operators, J. Geom. Anal., 6, 31-77 (1996) · Zbl 0858.58050 · doi:10.1007/BF02921566
[18] Hitchin, N., Harmonic spinors, Adv. Math., 14, 1-55 (1974) · Zbl 0284.58016 · doi:10.1016/0001-8708(74)90021-8
[19] Hortaçsu, M.; Rothe, K. D.; Schroer, B., Zero energy eigenstates for the Dirac boundary problem, Nucl. Phys. B, 171, 530-542 (1980) · doi:10.1016/0550-3213(80)90384-3
[20] Pfäffle, F., The Dirac spectrum of Bieberbach manifolds, J. Geom. Phys., 35, 367-385 (2000) · Zbl 0984.58017 · doi:10.1016/S0393-0440(00)00005-X
[21] Rellich, F., Perturbation Theory of Eigenvalue Problems (1954) · Zbl 0053.08801
[22] Safarov, Yu.; Vassiliev, D., The Asymptotic Distribution of Eigenvalues of Partial Differential Operators (1997) · Zbl 0870.35003
[23] Seeley, R. T., Complex powers of an elliptic operator, Proceedings of Symposia in Pure Mathematics, 10, 288-307 (1967) · Zbl 0159.15504
[24] Wojciechowski, K. P., The ζ-determinant and the additivity of the η-invariant on the smooth, self-adjoint Grassmannian, Commun. Math. Phys., 201, 423-444 (1999) · Zbl 0948.58022 · doi:10.1007/s002200050561
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.