×

On a Riesz basis of exponentials related to the eigenvalues of an analytic operator and application to a non-selfadjoint problem deduced from a perturbation method for sound radiation. (English) Zbl 1302.42016

Summary: We prove that the family of exponentials associated to the eigenvalues of the perturbed operator \(T(\varepsilon):= T_0+\varepsilon T_1+\varepsilon^2 T_2+\dots+\varepsilon^k T_k+\dots\) forms a Riesz basis in \(L^2(0,T)\), \(T>0\), where \(\varepsilon \in\mathbb C\), \(T_0\) is a closed densely defined linear operator on a separable Hilbert space \(\mathcal H\) with domain \(\mathcal D(T_0)\) having isolated eigenvalues with multiplicity one, while \(T_1,T_2, \dots\) are linear operators on \(\mathcal H\) having the same domain \(\mathcal D\supset \mathcal D(T_0)\) and satisfying a specific growing inequality. After that, we generalize this result using a \(H\)-Lipschitz function. As application, we consider a non-selfadjoint problem deduced from a perturbation method for sound radiation.{
©2013 American Institute of Physics}

MSC:

42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
47A10 Spectrum, resolvent
81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators
81Q15 Perturbation theories for operators and differential equations in quantum theory
Full Text: DOI

References:

[1] Avdonin, S. A.; Ivanov, S. A., Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Systems (1995) · Zbl 0866.93001
[2] Charfi, S.; Jeribi, A.; Walha, I., Riesz basis property of families of nonharmonic exponentials and application to a problem of a radiation of a vibrating structure in a light fluid, Numer. Funct. Anal. Optim., 32, 4, 370-382 (2011) · Zbl 1225.47085 · doi:10.1080/01630563.2011.555832
[3] Christensen, O., Frames containing a Riesz basis and approximation of the frame coefficients using finite-dimensional methods, J. Math. Anal. Appl., 199, 256-270 (1996) · Zbl 0889.46011 · doi:10.1006/jmaa.1996.0140
[4] Feki, I.; Jeribi, A.; Sfaxi, R., On an unconditional basis of generalized eigenvectors of an analytic operator and application to a problem of radiation of a vibrating structure in a light fluid, J. Math. Anal. Appl., 375, 261-269 (2011) · Zbl 1250.47012 · doi:10.1016/j.jmaa.2010.08.074
[5] Feki, I., Jeribi, A., and Sfaxi, R., “On a Riesz basis of eigenvectors of a nonself-adjoint analytic operator and applications,” Linear Multilinear Algebra (to be published). · Zbl 1302.47020
[6] Feki, I., Jeribi, A., and Sfaxi, R., “On a Schauder basis related to the eigenvectors of a family of non-selfadjoint analytic operators and applications,” Anal. Math. Phys. (to be published). · Zbl 1311.47014
[7] Filippi, P. J. T.; Lagarrigue, O.; Mattei, P. O., Perturbation method for sound radiation by a vibrating plate in a light fluid:comparison with the exact solution, J. Sound Vib., 177, 259-275 (1994) · Zbl 0945.74557 · doi:10.1006/jsvi.1994.1432
[8] Ingham, A. E., Some trigonometrical equalities with applications to the theory of series, Math. Z., 41, 367-399 (1936) · Zbl 0014.21503 · doi:10.1007/BF01180426
[9] Jeribi, A.; Intissar, A., On an Riesz basis of generalized eigenvectors of the nonselfadjoint problem deduced from a perturbation method for sound radiation by a vibrating plate in a light fluid, J. Math. Anal. Appl., 292, 1-16 (2004) · Zbl 1047.47015 · doi:10.1016/S0022-247X(03)00484-0
[10] 10.M. I.Kadeč, “The exact value of the Paley Wiener constant,” Soviet Math. Dokl.5, 559-561 (1964) M. I.Kadeč, [Dokl. Akad. Nauk SSSR155, 1253-1254 (1964) (in Russian)]. · Zbl 0196.42602
[11] Kato, T., Perturbation Theory for Linear Operators (1980) · Zbl 0435.47001
[12] Levin, B. J., On bases of exponential functions in \(L^2\), Zap. Har’kov. Gos. Univ. i Har’kov. Mat. Obsc., 27, 39-48 (1961)
[13] Morse, P. M.; Feshbach, H., Methods of Theoretical Physics (1953) · Zbl 0051.40603
[14] Nagy, B. Sz., Perturbations des transformations linéaires fermées, Acta Sci. Math., 14, 125-137 (1951) · Zbl 0045.21601
[15] Paley, R. E. A. C.; Wiener, N., Fourier Transforms in the Complex Domain (1934) · JFM 60.0345.02
[16] Pavlov, B. S., Basicity of an exponential systems and Muckenhoupt”s condition, Sov. Math. Dokl., 20, 655-659 (1979) · Zbl 0429.30004
[17] Schueller, A., Uniqueness for near-constant data in fourth-order inverse eigenvalue problems, J. Math. Anal. Appl., 258, 658-670 (2001) · Zbl 0982.34071 · doi:10.1006/jmaa.2000.7405
[18] Young, R. M., An Introduction to Nonharmonic Fourier Series (1980) · Zbl 0493.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.