×

Standing waves for coupled nonlinear Schrödinger equations with decaying potentials. (English) Zbl 1288.81171

Authors’ abstract: We study the following singularly perturbed problem for a coupled nonlinear Schrödinger system which arises in Bose-Einstein condensate: \(-{\epsilon}^{2}{\Delta}u + a(x)u = {\mu}_{1}u^{3} + {\beta}uv^{2}\) and \(-{\epsilon}^{2}{\Delta}v + b(x)v = {\mu}_{2}v^{3} + {\beta}u^{2}v\) in \(\mathbb {R}^3\) with \(u, v > 0\) and \(u(x), v(x) \to 0\) as \(|x| \to \infty\) . Here, \(a\), \(b\) are non-negative continuous potentials, and \({\mu}_{1}, {\mu}_{2} > 0\). We consider the case where the coupling constant \({\beta} > 0\) is relatively large. Then for sufficiently small \(\varepsilon > 0\), we obtain positive solutions of this system which concentrate around local minima of the potentials as \(\varepsilon \to 0\). The novelty is that the potentials \(a\) and \(b\) may vanish at someplace and decay to 0 at infinity.

MSC:

81V70 Many-body theory; quantum Hall effect
35Q55 NLS equations (nonlinear Schrödinger equations)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

References:

[1] Ambrosetti, A.; Colorado, E., Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342, 453-458 (2006) · Zbl 1094.35112 · doi:10.1016/j.crma.2006.01.024
[2] Ambrosetti, A.; Colorado, E., Standing waves of some coupled nonlinear Schrödinger equations, J. London Math. Soc., 75, 67-82 (2007) · Zbl 1130.34014 · doi:10.1112/jlms/jdl020
[3] Ambrosetti, A.; Felli, V.; Malchiodi, A., Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7, 117-144 (2005) · Zbl 1064.35175 · doi:10.4171/JEMS/24
[4] Ambrosetti, A.; Malchiodi, A.; Ruiz, D., Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math., 98, 317-348 (2006) · Zbl 1142.35082 · doi:10.1007/BF02790279
[5] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[6] Bae, S.; Byeon, J., Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity, Commun. Pure Appl. Anal., 12, 831-850 (2013) · Zbl 1267.35217 · doi:10.3934/cpaa.2013.12.831
[7] Bartsch, T.; Dancer, N.; Wang, Z.-Q., A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. PDE., 37, 345-361 (2010) · Zbl 1189.35074 · doi:10.1007/s00526-009-0265-y
[8] 8.H.Berestycki and P. L.Lions, “Nonlinear Scalar field equations. I Existence of a ground state. II Existence of infinitely many solutions,” Arch. Ration. Mech. Anal.82, 313-346 (1983);10.1007/BF00250555H.Berestycki and P. L.Lions, Arch. Ration. Mech. Anal.82, 347-376 (1983).10.1007/BF00250556 · Zbl 0556.35046
[9] Busca, J.; Sirakov, B., Symmetry results for semilinear elliptic systems in the whole space, J. Differ. Equations, 163, 41-56 (2000) · Zbl 0952.35033 · doi:10.1006/jdeq.1999.3701
[10] Bartsch, T.; Wang, Z.-Q., Note on ground states of nonlinear Schrödinger systems, J. Partial Differ. Equ., 19, 200-207 (2006) · Zbl 1104.35048
[11] Bartsch, T.; Wang, Z.-Q.; Wei, J., Bound states for a coupled Schrödinger system, J. Fixed Point Theor. Appl., 2, 353-367 (2007) · Zbl 1153.35390 · doi:10.1007/s11784-007-0033-6
[12] Byeon, J.; Jeanjean, L., Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185, 185-200 (2007) · Zbl 1132.35078 · doi:10.1007/s00205-006-0019-3
[13] Byeon, J.; Wang, Z., Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165, 295-316 (2002) · Zbl 1022.35064 · doi:10.1007/s00205-002-0225-6
[14] Byeon, J.; Wang, Z., Standing waves with a critical frequency for nonlinear Schrödinger equations II, Calc. Var. PDE, 18, 207-219 (2003) · Zbl 1073.35199 · doi:10.1007/s00526-002-0191-8
[15] Chen, Z.; Zou, W., An optimal constant for the existence of least energy solutions of a coupled Schrödinger system, Calc. Var. PDE., 48, 695-711 (2013) · Zbl 1286.35104 · doi:10.1007/s00526-012-0568-2
[16] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, 224 (1983) · Zbl 0562.35001
[17] Dancer, N.; Wei, J.; Weth, T., A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger systems, Ann. Inst. Henri Poincare, Nonlinear Anal., 27, 953-969 (2010) · Zbl 1191.35121 · doi:10.1016/j.anihpc.2010.01.009
[18] del Pino, M.; Felmer, P. L., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. PDE, 4, 121-137 (1996) · Zbl 0844.35032 · doi:10.1007/BF01189950
[19] del Pino, M.; Felmer, P. L., Semiclassical states for nonlinear Schrödinger equations, J. Funct. Anal., 149, 245-265 (1997) · Zbl 0887.35058 · doi:10.1006/jfan.1996.3085
[20] Esry, B.; Greene, C.; Burke, J.; Bohn, J., Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78, 3594-3597 (1997) · doi:10.1103/PhysRevLett.78.3594
[21] Ikoma, N.; Tanaka, K., A local mountain pass type result for a system of nonlinear Schrödinger equations, Calc. Var. PDE., 40, 449-480 (2011) · Zbl 1215.35061 · doi:10.1007/s00526-010-0347-x
[22] Lin, T.; Wei, J., Ground state of N coupled nonlinear Schrödinger equations in \documentclass[12pt]{minimal}\( \begin{document}\mathbb{R}^n\end{document} \), n ⩽ 3, Commun. Math. Phys., 255, 629-653 (2005) · Zbl 1119.35087 · doi:10.1007/s00220-005-1313-x
[23] Lin, T.; Wei, J., Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Differ. Equations, 229, 538-569 (2006) · Zbl 1105.35117 · doi:10.1016/j.jde.2005.12.011
[24] Liu, Z.; Wang, Z.-Q., Multiple bound states of nonlinear Schrödinger systems, Commun. Math. Phys., 282, 721-731 (2008) · Zbl 1156.35093 · doi:10.1007/s00220-008-0546-x
[25] Maia, L.; Montefusco, E.; Pellacci, B., Positive solutions for a weakly coupled nonlinear Schrödinger systems, J. Differ. Equations, 229, 743-767 (2006) · Zbl 1104.35053 · doi:10.1016/j.jde.2006.07.002
[26] Montefusco, E.; Pellacci, B.; Squassina, M., Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc., 10, 47-71 (2007) · Zbl 1187.35241 · doi:10.4171/JEMS/103
[27] Moroz, V.; Van Schaftingen, J., Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, Calc. Var. PDE., 37, 1-27 (2010) · Zbl 1186.35038 · doi:10.1007/s00526-009-0249-y
[28] Noris, B.; Ramos, M., Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proc. Am. Math. Soc., 138, 1681-1692 (2010) · Zbl 1189.35086 · doi:10.1090/S0002-9939-10-10231-7
[29] Noris, B.; Tavares, H.; Terracini, S.; Verzini, G., Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Commun. Pure Appl. Math., 63, 267-302 (2010) · Zbl 1189.35314 · doi:10.1002/cpa.20309
[30] Pomponio, A., Coupled nonlinear Schrödinger systems with potentials, J. Differ. Equations, 227, 258-281 (2006) · Zbl 1100.35098 · doi:10.1016/j.jde.2005.09.002
[31] Sirakov, B., Least energy solitary waves for a system of nonlinear Schrödinger equations in \documentclass[12pt]{minimal}\( \begin{document}\mathbb{R}^n\end{document} \), Commun. Math. Phys., 271, 199-221 (2007) · Zbl 1147.35098 · doi:10.1007/s00220-006-0179-x
[32] Wei, J.; Weth, T., Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei, Mat. Appl., 18, 279-293 (2007) · Zbl 1229.35019 · doi:10.4171/RLM/495
[33] Wei, J.; Weth, T., Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal., 190, 83-106 (2008) · Zbl 1161.35051 · doi:10.1007/s00205-008-0121-9
[34] Yin, H.; Zhang, P., Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity, J. Differ. Equations, 247, 618-647 (2009) · Zbl 1178.35353 · doi:10.1016/j.jde.2009.03.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.