×

Conjugate flow action functionals. (English) Zbl 1302.35340

Summary: We present a new general framework to construct an action functional for a non-potential field theory. The key idea relies on representing the governing equations relative to a diffeomorphic flow of curvilinear coordinates which is assumed to be functionally dependent on the solution field. Such flow, which will be called the conjugate flow, evolves in space and time similarly to a physical fluid flow of classical mechanics and it can be selected in order to symmetrize the Gâteaux derivative of the field equations with respect to suitable local bilinear forms. This is equivalent to requiring that the governing equations of the field theory can be derived from a principle of stationary action on a Lie group manifold. By using a general operator framework, we obtain the determining equations of such manifold and the corresponding conjugate flow action functional. In particular, we study scalar and vector field theories governed by second-order nonlinear partial differential equations. The identification of transformation groups leaving the conjugate flow action functional invariant could lead to the discovery of new conservation laws in fluid dynamics and other disciplines.{
©2013 American Institute of Physics}

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35A30 Geometric theory, characteristics, transformations in context of PDEs
35A15 Variational methods applied to PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] Aris, R., Vectors, Tensors and the Basic Equations of Fluid Mechanics (1989) · Zbl 1158.76300
[2] Batchelor, G. K., An Introduction to Fluid Dynamics (1967) · Zbl 0152.44402
[3] Benjamin, T. B., A unified theory of conjugate flows, Philos. Trans. R. Soc. London, Ser. A, 269, 1201, 587-643 (1971) · Zbl 0226.76037 · doi:10.1098/rsta.1971.0053
[4] Benjamin, T. B., Conjugate-flow theory for heterogeneous compressible fluids, with application to non-uniform suspensions of gas bubbles in liquids, J. Fluid. Mech., 54, 545-563 (1972) · Zbl 0255.76107 · doi:10.1017/S0022112072000862
[5] Berdichevsky, V., Variational Principles of Continuum Mechanics: I. Fundamentals (2009) · Zbl 1183.49002
[6] Bluman, G. W.; Anco, S. C., Symmetry and Integration Methods for Differential Equations (2002) · Zbl 1013.34004
[7] Bretherton, F. P., A note on Hamilton”s principle for perfect fluids, J. Fluid Mech., 44, 19-31 (1970) · Zbl 0198.58901 · doi:10.1017/S0022112070001660
[8] Calin, O.; Chang, D.-C., Geometric Mechanics on Riemannian Manifolds: Applications to Partial Differential Equations (2004)
[9] Cipriano, F.; Cruzeiro, A. B., Navier-Stokes equation and diffusions on the group of homeomorphisms of the torus, Commun. Math. Phys., 275, 255-269 (2007) · Zbl 1120.76013 · doi:10.1007/s00220-007-0306-3
[10] Eckart, C., Variation principles of hydrodynamics, Phys. Fluids, 3, 3, 421-427 (1960) · Zbl 0101.18604 · doi:10.1063/1.1706053
[11] Einstein, A., Relativity: The Special and General Theory (1920) · JFM 47.0826.05
[12] Eyink, G. L., Stochastic least-action principle for the incompressible Navier-Stokes equation, Physica D, 239, 14-15, 1236-1240 (2010) · Zbl 1193.37117 · doi:10.1016/j.physd.2008.11.011
[13] Filippov, V. M., Variational Principles for Nonpotential Operators (1989) · Zbl 0682.35006
[14] Finlayson, B. A., Existence of variational principles for the Navier-Stokes equation, Phys. Fluids, 15, 6, 963-967 (1972) · Zbl 0238.49031 · doi:10.1063/1.1694056
[15] Finlayson, B. A., The Method of Weighted Residuals and Variational Principles (1972) · Zbl 0319.49020
[16] Inoue, A.; Funaki, T., On a new derivation of the Navier-Stokes equation, Commun. Math. Phys., 65, 83-90 (1979) · Zbl 0404.35079 · doi:10.1007/BF01940961
[17] Gelfand, I. M.; Formin, S. V., Calculus of Variations (2000) · Zbl 0964.49001
[18] Gomes, D. A., A variational formulation for the Navier-Stokes equation, Commun. Math. Phys., 257, 227-234 (2005) · Zbl 1080.37083 · doi:10.1007/s00220-004-1263-8
[19] Gomes, D. A.; Cruzeiro, A. B.; Ouerdiane, H.; Obata, N., On a variational principle for the Navier-Stokes equation, Proceedings of the International Conference on Mathematical Analysis of Random Phenomena, 93-100 (2007) · Zbl 1127.76053
[20] Herivel, J. W., The derivation of the equations of motion of an ideal fluid by Hamilton”s principle, Proc. Cambridge Philos. Soc., 51, 344-349 (1955) · Zbl 0068.18802 · doi:10.1017/S0305004100030267
[21] Jouvet, B.; Phythian, R., Quantum aspects of classical and statistical fields, Phys. Rev. A, 19, 1350-1355 (1979) · doi:10.1103/PhysRevA.19.1350
[22] Kerswell, R. R., Variational principle for the Navier-Stokes equations, Phys. Rev. E, 59, 5, 5482-5494 (1999) · doi:10.1103/PhysRevE.59.5482
[23] Landau, L. D.; Lifshitz, E. M., The Classical Theory of Fields (1962) · Zbl 0178.28704
[24] Lovelock, D.; Rund, H., Tensors, Differential Forms and Variational Principles (1989)
[25] Luo, H.; Bewley, T. R., On the contravariant form of the Navier-Stokes equations in time-dependent curvilinear coordinate systems, J. Comput. Phys., 199, 355-375 (2004) · Zbl 1054.76019 · doi:10.1016/j.jcp.2004.02.012
[26] Magri, F., Variational formulation for every linear equation, Int. J. Eng. Sci., 12, 537-549 (1974) · Zbl 0282.49043 · doi:10.1016/0020-7225(74)90069-X
[27] Magri, F., An operator approach to Poisson brackets, Ann. Phys., 99, 196-228 (1976) · Zbl 0346.70014 · doi:10.1016/0003-4916(76)90090-7
[28] Martin, P. C.; Siggia, E. D.; Rose, H. A., Statistical dynamics of classical systems, Phys. Rev. A, 8, 423-437 (1973) · doi:10.1103/PhysRevA.8.423
[29] Matolcsi, T.; Vàn, P., Absolute time derivatives, J. Math. Phys., 48, 053507-19 (2007) · Zbl 1144.81388 · doi:10.1063/1.2719144
[30] Mobbs, S. D., Variational principles for perfect and dissipative fluid flows, Proc. R. Soc. London, Ser. A, 381, 457-468 (1982) · Zbl 0494.76007 · doi:10.1098/rspa.1982.0083
[31] Morrison, P. J., Hamiltonian description of the ideal fluid, Rev. Mod. Phys., 70, 467-521 (1998) · Zbl 1205.37093 · doi:10.1103/RevModPhys.70.467
[32] Morse, P. M.; Feshbach, H., Methods of Theoretical Physics (1953) · Zbl 0051.40603
[33] Nashed, M. Z.; Rall, L. B., Differentiability and related properties of non-linear operators: some aspects of the role of differentials in non-linear functional analysis, Nonlinear Functional Analysis and Applications (1971)
[34] Kosmann-Schwarzbach, Y., “The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century,” Springer 2011. · Zbl 1216.01011
[35] Rapoport, D. L., Random diffeomorphisms and integration of the classical Navier-Stokes equations, Rep. Math. Phys., 49, 1-27 (2002) · Zbl 1004.60060 · doi:10.1016/S0034-4877(02)80002-7
[36] Serrin, J., Mathematical principles of classical fluid mechanics, Handbuch der Physik, 125-262 (1959)
[37] Spurk, J. H.; Aksel, N., Fluid Mechanics (2008) · Zbl 1145.76002
[38] Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis (1995) · Zbl 0833.35110
[39] Thiffeault, J. L., Covariant time derivatives for dynamical systems, J. Phys. A, 34, 29, 5875-5885 (2001) · Zbl 1001.70012 · doi:10.1088/0305-4470/34/29/309
[40] Thiffeault, J. L., Advection-diffusion in Lagrangian coordinates, Phys. Lett. A, 309, 415-4225 (2003) · Zbl 1011.76082 · doi:10.1016/S0375-9601(03)00244-5
[41] Tonti, E., Variational formulation for nonlinear differential equations (i), Bull. Acad. Roy. Belg., Cl. Sci. Ser. 5, 55, 3, 137-165 (1969) · Zbl 0182.11402
[42] Tonti, E., Variational formulation for nonlinear differential equations (ii), Bull. Acad. Roy. Belg., Cl. Sci. Ser. 5, 55, 4, 262-278 (1969) · Zbl 0186.14301
[43] Tonti, E., On the variational formulation for linear initial value problems, Ann. Mat. Pura Appl., XCV, 331-360 (1973) · Zbl 0278.49047 · doi:10.1007/BF02410725
[44] Tonti, E., Variational formulation for every nonlinear problem, Int. J. Eng. Sci., 22, 11-12, 1343-1371 (1984) · Zbl 0558.49022 · doi:10.1016/0020-7225(84)90026-0
[45] Tonti, E.; Rassias, G. M.; Rassias, T. M., Inverse problem: its general solution, Differential Geometry, Calculus of Variations and Their Applications, 497-510 (1985) · Zbl 0583.49010
[46] Truesdell, C., The physical components of vectors and tensors, Z. Angew. Math. Mech., 33, 10-11, 345-356 (1953) · Zbl 0051.38105 · doi:10.1002/zamm.19530331005
[47] Vainberg, M. M., Variational Methods for the Study of Nonlinear Operators (1964) · Zbl 0122.35501
[48] Venturi, D., Convective derivatives and Reynolds transport in curvilinear time-dependent coordinates, J. Phys. A: Math. Theor., 42, 125203-16 (2009) · Zbl 1164.82009 · doi:10.1088/1751-8113/42/12/125203
[49] Venturi, D., A fully symmetric nonlinear biorthogonal decomposition theory for random fields, Physica D, 240, 4-5, 415-425 (2011) · Zbl 1209.60031 · doi:10.1016/j.physd.2010.10.005
[50] Volterra, V., Leçons sur les fonctions de ligne (1913) · JFM 44.0458.01
[51] Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (1972)
[52] Yasue, K., A variational principle for the Navier-Stokes equation, J. Funct. Anal., 51, 133-141 (1983) · Zbl 0533.35075 · doi:10.1016/0022-1236(83)90021-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.