×

An exactly solvable three-dimensional nonlinear quantum oscillator. (English) Zbl 1287.81048

Authors’ abstract: Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the \(s\)-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35Q55 NLS equations (nonlinear Schrödinger equations)
81U15 Exactly and quasi-solvable systems arising in quantum theory
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)

References:

[1] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1964) · Zbl 0171.38503
[2] Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O.; Riglioni, D., Quantum mechanics on spaces of nonconstant curvature: The oscillator problem and superintegrability, Ann. Phys., 326, 2053-2073 (2011) · Zbl 1220.81109 · doi:10.1016/j.aop.2011.03.002
[3] Dicke, R. H., Mach”s principle and invariance under transformation of units, Phys. Rev., 125, 2163-2167 (1962) · Zbl 0113.45101 · doi:10.1103/PhysRev.125.2163
[4] Brans, C.; Dicke, R. H., Mach”s principle and a relativistic theory of gravitation, Phys. Rev., 124, 925-935 (1961) · Zbl 0103.21402 · doi:10.1103/PhysRev.124.925
[5] Cariñena, J. F.; Rañada, M. F.; Santander, M., The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach. II, J. Math. Phys., 53, 102109 (2012) · Zbl 1278.81092 · doi:10.1063/1.4757604
[6] Cariñena, J. F.; Rañada, M. F.; Santander, M., A quantum exactly-solvable nonlinear oscillator with quasi-harmonic behaviour, Ann. Phys., 322, 434-459 (2007) · Zbl 1119.81098 · doi:10.1016/j.aop.2006.03.005
[7] Cariñena, J. F.; Rañada, M. F.; Santander, M., The quantum harmonic oscillator on the sphere and the hyperbolic plane, Ann. Phys., 322, 2249-2278 (2007) · Zbl 1132.81016 · doi:10.1016/j.aop.2006.10.010
[8] Cariñena, J. F.; Rañada, M. F.; Santander, M.; Senthilvelan, M., A non-linear oscillator with quasi-harmonic behaviour: two- and n-dimensional oscillators, Nonlinearity, 17, 1941-1963 (2004) · Zbl 1068.37038 · doi:10.1088/0951-7715/17/5/019
[9] Fujii, Y.; Maeda, K., The Scalar-Tensor Theory of Gravitation (2003) · Zbl 1079.83023
[10] Higgs, P. W., Dynamical symmetries in a spherical geometry, J. Phys. A, 12, 309-323 (1979) · Zbl 0418.70016 · doi:10.1088/0305-4470/12/3/006
[11] Lakshmanan, M.; Eswaran, K., Quantum dynamics of a solvable nonlinear chiral model, J. Phys. A, 8, 1658-1669 (1975) · doi:10.1088/0305-4470/8/10/018
[12] Mathews, P. M.; Lakshmanan, M., A quantum-mechanically solvable nonpolynomial Lagrangian with velocity-dependent interaction, Nuovo Cimento A, 26, 299-316 (1975) · doi:10.1007/BF02769015
[13] Mathews, P. M.; Lakshmanan, M., On a unique nonlinear oscillator, Q. Appl. Math., 32, 215-218 (1974) · Zbl 0284.34046
[14] Messiah, A., Quantum Mechanics (1961)
[15] Ryshik, I. M.; Gradstein, I. S., Tables of Integrals, Series, and Products (1965) · Zbl 0080.33703
[16] Schulze-Halberg, A.; Morris, J. R., Special function solutions of a spectral problem for a nonlinear quantum oscillator, J. Phys. A, 45, 305301 (2012) · Zbl 1251.81038 · doi:10.1088/1751-8113/45/30/305301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.