×

Interpolatability distinguishes LOCC from separable von Neumann measurements. (English) Zbl 1284.81054

Summary: Local operations with classical communication (LOCC) and separable operations are two classes of quantum operations that play key roles in the study of quantum entanglement. Separable operations are strictly more powerful than LOCC, but no simple explanation of this phenomenon is known. We show that, in the case of von Neumann measurements, the ability to interpolate measurements is an operational principle that sets apart LOCC and separable operations.{
©2013 American Institute of Physics}

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations

References:

[1] Bennett, C. H.; DiVincenzo, D. P.; Fuchs, C. A.; Mor, T.; Rains, E.; Shor, P. W.; Smolin, J. A.; Wootters, W. K., Quantum nonlocality without entanglement, Phys. Rev. A, 59, 2, 1070-1091 (1999) · doi:10.1103/PhysRevA.59.1070
[2] Chitambar, E.; Cui, W.; Lo, H.-K., Entanglement monotones for W-type states, Phys. Rev. A, 85, 6, 062316 (2012) · doi:10.1103/PhysRevA.85.062316
[3] Chitambar, E.; Cui, W.; Lo, H.-K., Increasing entanglement monotones by separable operations, Phys. Rev. Lett., 108, 24, 240504 (2012) · doi:10.1103/PhysRevLett.108.240504
[4] Chitambar, E.; Hsieh, M.-H., Revisiting the optimal detection of quantum information, Phys. Rev. A, 88, 2, 020302 (2013) · doi:10.1103/PhysRevA.88.020302
[5] Chitambar, E.; Leung, D.; Mančinska, L.; Ozols, M.; Winter, A., Everything you always wanted to know about LOCC (but were afraid to ask), Comm. Math. Phys. · Zbl 1290.81012
[6] Childs, A. M.; Leung, D.; Mančinska, L.; Ozols, M., A framework for bounding nonlocality of state discrimination, Comm. Math. Phys., 323, 3, 1121 (2013) · Zbl 1278.81038 · doi:10.1007/s00220-013-1784-0
[7] Cohen, S. M., Local distinguishability with preservation of entanglement, Phys. Rev. A, 75, 5, 052313 (2007) · doi:10.1103/PhysRevA.75.052313
[8] Groisman, B.; Vaidman, L., Nonlocal variables with product-state eigenstates, J. Phys. A, 34, 35, 6881 (2001) · Zbl 0988.81025 · doi:10.1088/0305-4470/34/35/313
[9] Kleinmann, M.; Kampermann, H.; Bruß, D., Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm, Phys. Rev. A, 84, 4, 042326 (2011) · doi:10.1103/PhysRevA.84.042326
[10] Koashi, M., On the irreversibility of measurements of correlations, J. Phys.: Conf. Ser., 143, 1, 012007 (2009) · doi:10.1088/1742-6596/143/1/012007
[11] Koashi, M.; Takenaga, F.; Yamamoto, T.; Imoto, N., Quantum nonlocality without entanglement in a pair of qubits (2007)
[12] Walgate, J.; Hardy, L., Nonlocality, asymmetry, and distinguishing bipartite states, Phys. Rev. Lett., 89, 14, 147901 (2002) · Zbl 1267.81050 · doi:10.1103/PhysRevLett.89.147901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.