×

Heat kernel asymptotics for magnetic Schrödinger operators. (English) Zbl 1284.81106

Summary: We explicitly construct parametrices for magnetic Schrödinger operators on \({\mathbb{R}}^d\) and prove that they provide a complete small-\(t\) expansion for the corresponding heat kernel, both on and off the diagonal.{
©2013 American Institute of Physics}

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35K08 Heat kernel
35J10 Schrödinger operator, Schrödinger equation

References:

[1] Minakshisundaram, S.; Pleijel, Å., Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Can. J. Math., 1, 242-256 (1949) · Zbl 0041.42701 · doi:10.4153/CJM-1949-021-5
[2] Minakshisundaram, S., Eigenfunctions on Riemannian manifolds, J. Indian Math. Soc., New Ser., 17, 159-165 (1953) · Zbl 0055.08702
[3] Berger, M.; Gauduchon, P.; Mazet, E., Le spectre d’une variété riemannienne, 194, vii+251 (1971) · Zbl 0223.53034
[4] Berline, N.; Getzler, E.; Vergne, M., Heat Kernels and Dirac Operators, 298, viii+369 (1992) · Zbl 0744.58001
[5] Gilkey, P. B., Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, x+516 (1995) · Zbl 0856.58001
[6] Kirsten, K., Spectral Functions in Mathematics and Physics, 400 (2001)
[7] Atiyah, M.; Bott, R.; Patodi, V. K., On the heat equation and the index theorem, Invent. Math., 19, 279-330 (1973) · Zbl 0257.58008 · doi:10.1007/BF01425417
[8] Loss, M.; Thaller, B., Optimal heat kernel estimates for Schrödinger operators with magnetic fields in two dimensions, Commun. Math. Phys., 186, 95-107 (1997) · Zbl 0873.35078 · doi:10.1007/BF02885674
[9] Erdős, L., Dia- and paramagnetism for nonhomogeneous magnetic fields, J. Math. Phys., 38, 1289-1317 (1997) · Zbl 0875.81047 · doi:10.1063/1.531909
[10] Colin de Verdière, Y., Une formule de traces pour l”opérateur de Schrödinger dans \(\textbf{R}^3\), Ann. Sci. Éc. Normale Super. (4), 14, 27-39 (1981) · Zbl 0482.35068
[11] Hitrik, M., Existence of resonances in magnetic scattering, J. Comput. Appl. Math., 148, 91-97 (2002) · Zbl 1010.81084 · doi:10.1016/S0377-0427(02)00575-7
[12] Hitrik, M.; Polterovich, I., Regularized traces and Taylor expansions for the heat semigroup, J. Lond. Math. Soc., 68, 2, 402-418 (2003) · Zbl 1167.35335 · doi:10.1112/S0024610703004538
[13] Korotyaev, E.; Pushnitski, A., On the high-energy asymptotics of the integrated density of states, Bull. London Math. Soc., 35, 770-776 (2003) · Zbl 1075.35542 · doi:10.1112/S0024609303002467
[14] Simon, B., Schrödinger operators with singular magnetic vector potentials, Math. Z., 131, 361-370 (1973) · Zbl 0277.47006 · doi:10.1007/BF01174911
[15] Leinfelder, H.; Simader, C. G., Schrödinger operators with singular magnetic vector potentials, Math. Z., 176, 1-19 (1981) · Zbl 0468.35038 · doi:10.1007/BF01258900
[16] Simon, B., Functional Integration and Quantum Physics, xiv+306 (2005) · Zbl 1061.28010
[17] Kac, M., Can one hear the shape of a drum?, Am. Math. Monthly, 73, 1-23 (1966) · Zbl 0139.05603 · doi:10.2307/2313748
[18] McKean, H. P. Jr.; Singer, I. M., Curvature and the eigenvalues of the Laplacian, J. Diff. Geom., 1, 43-69 (1967) · Zbl 0198.44301
[19] Yosida, K., On the fundamental solution of the parabolic equation in a Riemannian space, Osaka Math. J., 5, 65-74 (1953) · Zbl 0052.32702
[20] Grieser, D., “Notes on heat kernel asymptotics” (2004), see .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.