×

Feynman-Kac penalization problem for additive functionals with jumping functions. (English) Zbl 1292.60083

The paper considers the Feynman-Kac penalization problem, i.e., (i) does there exist a probability measure \(\tilde{\operatorname{P}}_x\) such that \[ \lim_{t\to\infty}\frac{\operatorname{E}_x [e^{A_t}S]}{\operatorname{E}_x[e^{A_t}]} =\int Sd\tilde{\operatorname{P}}_x, \] for any bounded \(S\), every \(x\in R^n\), \(s\geq 0\), where \(A_t\) is an additive functional of a symmetric \(\alpha\)-stable process \(X\) with \(0<\alpha<2\), and (ii) does there exists a martingale \(M\) by which \(\tilde{\operatorname{P}}\) is defined (that is, \(d\tilde{\operatorname{P}}_x = M_sd\operatorname{P}_x\)). The author solves this problem for additive functionals with jumps, that is \(A_t\) is a positive continuous additive functional with Green-tight Revuz measure to which symmetric jumps are added. Examples of jumping functions are given.

MSC:

60J75 Jump processes (MSC2010)
60G52 Stable stochastic processes

References:

[1] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure. Appl. Math., 35 (1982), 209-273. · Zbl 0459.60069 · doi:10.1002/cpa.3160350206
[2] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Pure Appl. Math., 29 , Academic Press, New York, London, 1968. · Zbl 0169.49204
[3] R. F. Bass and D. A. Levin, Transition probabilities for symmetric jump processes, Trans. Amer. Math. Soc., 354 (2002), 2933-2953. · Zbl 0993.60070 · doi:10.1090/S0002-9947-02-02998-7
[4] M. Brancovan, Fonctionnelles additives spéciales des processus récurrents au sens de Harris, Z. Wahrsch. Verw. Gebiete., 47 (1979), 163-194. · Zbl 0381.60065 · doi:10.1007/BF00535281
[5] Z.-Q. Chen, P. J. Fitzsimmons, M. Takeda, J. Ying and T.-S. Zhang, Absolute continuity of symmetric Markov processes, Ann. Probab., 32 (2004), 2067-2098. · Zbl 1053.60084 · doi:10.1214/009117904000000432
[6] Z.-Q. Chen, Gaugeability and conditional gaugeability, Trans. Amer. Math. Soc., 354 (2002), 4639-4679. · Zbl 1006.60072 · doi:10.1090/S0002-9947-02-03059-3
[7] Z.-Q. Chen, Analytic characterization of conditional gaugeability for non-local Feynman-Kac transforms, J. Funct. Anal., 202 (2003), 226-246. · Zbl 1023.60065 · doi:10.1016/S0022-1236(02)00096-4
[8] Z.-Q. Chen, Uniform integrability of exponential martingales and spectral bounds of non-local Feynman-Kac semigroups, arXiv: · Zbl 1282.60075 · doi:10.1142/9789814383585_0004
[9] Z.-Q. Chen and T. Kumagai, Heat kernel estimates for jump processes of mixed types on metric measure spaces, Probab. Theory Related Fields, 140 (2008), 277-317. · Zbl 1131.60076 · doi:10.1007/s00440-007-0070-5
[10] Z.-Q. Chen and R. Song, Drift transforms and Green function estimates for discontinuous processes, J. Funct. Anal., 201 (2003), 262-281. · Zbl 1031.60071 · doi:10.1016/S0022-1236(03)00087-9
[11] Z.-Q. Chen and R. Song, General gauge and conditional gauge theorems, Ann. Probab., 30 (2002), 1313-1339. · Zbl 1017.60086 · doi:10.1214/aop/1029867129
[12] K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger’s Equation, Grundlehren Math. Wiss., 312 , Springer-Verlag, Berlin, Heidelberg, 1995. · Zbl 0819.60068
[13] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter Stud. Math., 19 , Walter de Gruyter, Berlin, 1994. · Zbl 0838.31001
[14] M. Fukushima, Dirichlet forms and Markov processes, Kinokuni-ya, Tokyo, 1975 (in Japanese).
[15] S. W. He, J. G. Wang and J. A. Yan, Semimartingale Theory and Stochastic Calculus, Science Press, Beijing, 1992. · Zbl 0781.60002
[16] N. Jacob, Pseudo-Differential Operators and Markov Processes. vol.,I, Imperial College Press, London, 2001. · Zbl 0987.60003
[17] K. Kuwae and M. Takahashi, Kato class measures of symmetric Markov processes under heat kernel estimates, J. Funct. Anal., 250 (2007), 86-113. · Zbl 1132.47033 · doi:10.1016/j.jfa.2006.10.010
[18] K. Kuwae and M. Takahashi, Kato class functions of Markov processes under ultracontractivity, In: Potential Theory in Matsue, (eds. H. Aikawa, T. Kumagai, Y. Mizuta and N. Suzuki), Adv. Stud. Pure Math., 44 , Math. Soc. Japan, Tokyo, 2006, pp.,193-202. · Zbl 1116.31005
[19] H. Kumano-go, Pseudo-differential Operators, Iwanami Shoten, Tokyo, 1974 (in Japanese).
[20] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales. vol.,2, Itô Calculus, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley & Sons Ltd., New York, 1987. · Zbl 0627.60001
[21] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. third edition, Grundlehren Math. Wiss., 293 , Springer-Verlag, Berlin, 1999. · Zbl 0917.60006
[22] B. Roynette, P. Vallois and M. Yor, Some penalisations of the Wiener measure, Jpn. J. Math., 1 (2006), 263-290. · Zbl 1160.60315 · doi:10.1007/s11537-006-0507-0
[23] B. Roynette, P. Vallois and M. Yor, Limiting laws associated with Brownian motion perturbed by normalized exponential weights. I, Studia Sci. Math. Hungar., 43 (2006), 171-246. · Zbl 1121.60027 · doi:10.1556/SScMath.43.2006.2.3
[24] B. Roynette, P. Vallois and M. Yor, Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time. II, Studia Sci. Math. Hungar., 43 (2006), 295-360. · Zbl 1121.60004 · doi:10.1556/SScMath.43.2006.3.3
[25] B. Roynette, P. Vallois and M. Yor, Penalisations of multidimensional Brownian motion. VI, ESAIM Probab. Stat., 13 (2009), 152-180. · Zbl 1189.60069 · doi:10.1051/ps:2008003
[26] B. Simon, Brownian motion, \(L^p\) properties of Schrödinger operators and the localization of binding, J. Funct. Anal., 35 (1980), 215-229. · Zbl 0446.47041 · doi:10.1016/0022-1236(80)90006-3
[27] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447-526. · Zbl 0524.35002 · doi:10.1090/S0273-0979-1982-15041-8
[28] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Ann. of Math. Stud., 63 , Princeton University Press, 1970. · Zbl 0193.10502
[29] P. Stollmann and J. Voigt, Perturbation of Dirichlet forms by measures, Potential Anal., 5 (1996), 109-138. · Zbl 0861.31004 · doi:10.1007/BF00396775
[30] M. Takeda, Feynman-Kac penalisations of symmetric stable processes, Electron Commun. Probab., 15 (2010), 32-43. · Zbl 1193.60096 · doi:10.1214/ECP.v15-1524
[31] M. Takeda, Large deviations for additive functionals of symmetric stable processes, J. Theoret. Probab., 21 (2008), 336-355. · Zbl 1139.60313 · doi:10.1007/s10959-007-0111-0
[32] Y. Tawara, \(L^p\)-independence of Growth Bounds of Generalized Feynman-Kac Semigroups, Doctor Thesis, Tohoku University, 2008.
[33] M. Takeda and K. Tsuchida, Differentiability of spectral functions for symmetric \(\alpha\)-stable processes, Trans. Amer. Math. Soc., 359 (2007), 4031-4054. · Zbl 1112.60058 · doi:10.1090/S0002-9947-07-04149-9
[34] M. Takeda and T. Uemura, Subcriticality and gaugeability for symmetric \(\alpha\)-stable processes, Forum Math., 16 (2004), 505-517. · Zbl 1068.60094 · doi:10.1515/form.2004.024
[35] K. Yano, Y. Yano and M. Yor, Penalising symmetric stable Lévy paths, J. Math. Soc. Japan, 61 (2009), 757-798. · Zbl 1180.60008 · doi:10.2969/jmsj/06130757
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.