×

Equivariant version of Rochlin-type congruences. (English) Zbl 1326.19004

Summary: W. Zhang [C. R. Acad. Sci., Paris, Sér. I 315, No. 3, 305–308 (1992; Zbl 0767.57015); C. R. Acad. Sci., Paris, Sér. I 317, No. 7, 689–692 (1993; Zbl 0804.57012)] showed a higher dimensional version of Rochlin congruence for \(8k+4\)-dimensional manifolds. We give an equivariant version of Zhang’s theorem for \(8k+4\)-dimensional compact \(\mathrm{Spin}^c-G\)-manifolds with spin boundary, where we define equivariant indices with values in \(R(G)/RSp(G)\). We also give a similar congruence relation for \(8k\)-dimensional compact \(\mathrm{Spin}^c-G\)-manifolds with spin boundary, where we define equivariant indices with values in \(R(G)/RO(G)\).

MSC:

19K56 Index theory
57S15 Compact Lie groups of differentiable transformations

References:

[1] J. Frank Adams, Lectures on Lie Groups, W. A. Benjamin, Inc., New York, Amsterdam, 1969. · Zbl 0206.31604
[2] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian Geometry. I, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43-69. · Zbl 0297.58008 · doi:10.1017/S0305004100049410
[3] M. F. Atiyah and I. M. Singer, The index of elliptic operators. I, Ann. of Math. (2), 87 (1968), 484-530. · Zbl 0164.24001 · doi:10.2307/1970715
[4] M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2), 87 (1968), 546-604. · Zbl 0164.24301 · doi:10.2307/1970717
[5] M. F. Atiyah and I. M. Singer, The index of elliptic operators. V, Ann. of Math. (2), 93 (1971), 139-149. · Zbl 0212.28603 · doi:10.2307/1970756
[6] H. Donnelly, Eta invariants for \(G\)-spaces, Indiana Univ. Math. J., 27 (1978), 889-918. · Zbl 0402.58006 · doi:10.1512/iumj.1978.27.27060
[7] M. Furuta, Index theorem. 1, Transl. Math. Monogr., 235 , Amer. Math. Soc., Providence, RI, 2007. Translated from the 1999 Japanese original by K. Ono, Iwanami Series in Modern Mathematics.
[8] M. Furuta and Y. Kametani, The Seiberg-Witten equations and equivariant \(e\)-invariants, preprint, 2001. · Zbl 0976.57030
[9] H. B. Lawson Jr. and M.-L. Michelsohn, Spin Geometry, Princeton Math. Ser., 38 , Princeton University Press, Princeton, NJ, 1989.
[10] W. Zhang, \(\eta\)-invariants and Rokhlin congruences, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 305-308. · Zbl 0767.57015
[11] W. Zhang, Spin\(^c\)-manifolds and Rokhlin congruences, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 689-692. · Zbl 0804.57012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.