×

Euler and mathematical methods in mechanics. (English. Russian original) Zbl 1307.01009

Proc. Steklov Inst. Math. 272, Suppl. 2, S191-S207 (2011); translation from Sovrem. Probl. Mat. 11, 39-70 (2008).
While this paper contains brief descriptions concerning Euler and his work, the core of the paper is the presentation of aspects of his vast heritage. In particular, several topics associated with Euler are linked to modern work published in the last 30 years. For example, the section on divergent series and the Lagrange-Dirichlet theorem connects Euler’s summation work to a result of A. N. Kuznetsov in 1972. The paper reminds us that Euler developed the theory of motion of rotating bodies and the least-action principle. In hydrodynamics, Euler’s equations of motion for an ideal fluid lead to a description of stationary flow and the work of V. I. Arnold and the author on the hydrodynamics of Hamiltonian systems. A paper of the author from 1990 relates to vortex theory and Euler’s top. Mentioning Euler’s investigations of elasticity he introduces a synopsis of modern developments in stability theory of elastic systems. Finally, it is shown how Euler’s topic of two fixed centers of gravity has been generalized to any space of constant curvature. Altogether, the paper is a useful, even though brief, exposition of a large body of work.

MSC:

01A50 History of mathematics in the 18th century
01A65 Development of contemporary mathematics
01A70 Biographies, obituaries, personalia, bibliographies
70-03 History of mechanics of particles and systems
76-03 History of fluid mechanics

Biographic References:

Euler, Leonhard
Full Text: DOI

References:

[1] A. N. Krylov, ”Leonhard Euler,” in Collection of Works of Academician A.N. Krylov, Vol. 1, Ch. 2: Popular Scientific Works. Biographical Characteristic (Izd. Akad. Nauk SSSR, Moscow, 1951), pp. 192–217 [in Russian].
[2] G. H. Hardy, Divergent Series (Clarendon, Oxford, 1949).
[3] A. N. Kuznetsov, ”Differentiable Solutions to Degenerate Systems of Ordinary Equations,” Funkts. Anal. Ego Prilozh. 6(2), 41–51 [Funct. Anal. Appl. 6 (2), 119–127 (1972)].
[4] A. N. Kuznetsov, ”Existence of Solutions Entering at a Singular Point of an Autonomous System Having a Formal Solution,” Funkts. Anal. Ego Prilozh. 23(4), 63–74 (1989) Funct. Anal. Appl. 23 (4), 308–317 (1989). · Zbl 0717.34004
[5] J.-P. Ramis, Séries divergentes et théories asymptotiques, in Panoramas et Synthèses (Soc. Math. France, Paris, 1993), Vol. 121.
[6] V. V. Kozlov, ”Asymptotic Motions and the Inversion of the Lagrange-Dirichlet Theorem,” Prikl. Mat. Mekh. 50(6), 928–937 (1986) [J. Appl. Math. Mech. 50 (6), 719–725 (1986)].
[7] V. V. Kozlov and V. P. Palamodov, ”On Asymptotic Solutions of the Equations of Classical Mechanics,” Dokl. Akad. Nauk SSSR 263(2), 285–289 (1982) [Soviet Math. Dokl. 25 (2), 335–339 (1982)]. · Zbl 0504.70018
[8] V. V. Kozlov and S. D. Furta, Asymptotic Expansions of Solutions of Strongly Nonlinear Systems of Differential Equations (Izd. Mosk. Univ., Moscow, 1996) [in Russian]. · Zbl 0949.34003
[9] C. G. J. Jacobi, Vorlesungen über analytische Mechanik, in Dokumente Gesch. Math. (Deutsche Mathematiker Vereinigung, Freiburg, 1996), Vol. 8.
[10] V. I. Arnold, ”On the Topology of Three-Dimensional Steady Flows of an Ideal Fluid,” Prikl. Mat. Mekh. 30(1), 183–185 (1966) [J. Appl. Math. Mech. 30 (1), 223–226 (1966)].
[11] V. V. Kozlov, ”Notes on Steady Vortex Motions of Continuous Medium,” Prikl. Mat. Mekh. 47(2), 341–342 (1983) [J. Appl. Math. Mech. 47 (2), 288–289 (1983)].
[12] S. V. Bolotin, ”Nonintegrability of the N-Center Problem for N >2,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 3, 65–68 (1984) [Moscow Univ. Mech. Bull. 39 (3), 24–28 (1984)]. · Zbl 0551.70008
[13] V. V. Kozlov, ”The Hydrodynamics of Hamiltonian Systems,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 6, 10–22 (1983) [Moscow Univ. Mech. Bull. 38 (6), 9–23 (1983)]. · Zbl 0552.76006
[14] V. V. Kozlov, ”An Extension of the Hamilton-Jacobi Method,” Prikl. Mat. Mekh. 60(6), 929–939 (1996) [J. Appl. Math. Mech. 60 (6), 911–920 (1996)].
[15] I. S. Arzhanykh, Momentum Fields (Nat. Lending Lib., Boston Spa, Yorkshire, 1971; Nauka, Tashkent, 1965).
[16] V. V. Kozlov, Dynamical Systems. X. General Theory of Vortices, in Encyclopaedia Math. Sci. (Springer-Verlag, Berlin, 2003) Vol. 67. · Zbl 1104.37050
[17] V. V. Kozlov, ”Eddy Theory of the Top,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 4, 56–62 (1990) [Moscow Univ. Mech. Bull. 45 (4), 26–38 (1990)].
[18] H. Poincaré, ”Sur une forme nouvelle des équations de la m échanique,” C. R. Acad. Sci. Paris 132, 369–371 (1901). · JFM 32.0715.01
[19] V. V. Kozlov and V. A. Yaroshchuk, ”On the Invariant Measures of Euler-Poincar é Equations on Unimodular Groups,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 2, 91–95 (1993) [Moscow Univ. Mech. Bull. 48 (2), 45–50 (1993)]. · Zbl 0804.58034
[20] J.-J. Moreau, ”Une m éthode de ”cin ématique fonctionnelle” en hydrodynamique,” C. R. Acad. Sci. Paris 249, 2156–2158 (1959). · Zbl 0117.19601
[21] V. I. Yudovich, ”Plane Unsteady Motion of an Ideal Incompressible Fluid,” Dokl. Akad. Nauk SSSR 136(3), 564–567 (1961) [Soviet Phys. Dokl. 6 (3), 18–20 (1961)]. · Zbl 0098.39602
[22] V. I. Arnold, ”Sur un principe variationnel pour lesécoulements stationnaires des liquides parfaits et ses applications aux problèmes de stabilité non linéaires,” J.Mécanique 5(1), 29–43 (1966).
[23] M. V. Deryabin and Yu. N. Fedorov, ”On Reductions for a Group of Geodesic Flows with (Left-) Right-Invariant Metric, and Their Symmetry Fields,” Dokl. Akad. Nauk 391(4), 439–442 (2003) [Dokl. Math. 68 (1), 75–78 (2003)].
[24] V. V. Kozlov, ”Linear Systems with a Quadratic Integral,” Prikl. Mat. Mekh. 56(6), 900–906 (1992) [J. Appl. Math. Mech. 56 (6), 803–809 (1992)].
[25] V. V. Kozlov, ”On the Degree of Instability,” Prikl. Mat. Mekh. 57(5), 14–19 (1993) [J. Appl. Math. Mech. 57 (5), 771–776 (1993)].
[26] A. Ostrowski and H. Schneider, ”Some Theorems on the Inertia of General Matrices,” J. Math. Anal. Appl. 4(1), 72–84 (1962). · Zbl 0112.01401 · doi:10.1016/0022-247X(62)90030-6
[27] V. V. Kozlov, ”Remarks on Eigenvalues of Real Matrices,” Dokl. Akad. Nauk 403(5), 589–592 (2005) [Dokl. Math. 72 (1), 567–569 (2005)].
[28] V. V. Kozlov and A. A. Karapetyan, ”On the Degree of Stability,” Differ. Uravn. 41(2), 186–192 (2005) [Differ. Equations 41 (2), 195–201 (2005)]. · Zbl 1090.34564
[29] H. K. Wimmer, ”Inertia Theorems for Matrices, Controllability, and Linear Vibrations,” Linear Algebra Appl. 8(4), 337–343 (1974). · Zbl 0288.15015 · doi:10.1016/0024-3795(74)90060-3
[30] P. Lancaster and M. Tismenetsky, ”Inertia Characteristics of Selfajoint Matrix Polynomials,” Linear Algebra Appl. 52–53, 479–496 (1983). · Zbl 0516.15018 · doi:10.1016/0024-3795(83)80030-5
[31] A. A. Shkalikov, ”Operator Pencils Arising in Elasticity and Hydrodynamics: The Instability Index Formula,” in Recent Developments in Operator Theory and Its Applications. Proceedings of International Conference, Winnipeg, Canada, 1994, in Oper. Theory Adv. Appl. (Birkh äuser, Basel, 1996), Vol. 87, pp. 358–385. · Zbl 0860.47009
[32] Classical Dynamics in non-Euclidean Spaces, Ed. by A. V. Borisov and I. S. Mamaev (Inst. Komp’yuter. Issled., Moscow, 2004) [in Russian].
[33] V. V. Kozlov and A. O. Harin, ”Kepler’s Problem in Constant Curvature Spaces,” Celestial Mech. Dynam. Astronom. 54(4), 393–399 (1992). · Zbl 0765.70007 · doi:10.1007/BF00049149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.