×

Darboux transformations and recursion operators for differential-difference equations. (English. Russian original) Zbl 1301.37041

Theor. Math. Phys. 177, No. 3, 1606-1654 (2013); translation from Teor. Mat. Fiz. 177, No. 3, 387-440 (2013).
The aim of this article is to make an extensive contribution in multi-Hamiltonian structures, recursion operators and Darboux-Lax representations for a wide class of integrable differential-difference equations. Some related results are known, but scattered in the literature. In many cases, the authors complete the picture by providing explicit expressions for the Hamiltonian, symplectic and recursion operators and the Darboux-Lax representations.
Firstly, the authors review two closely related concepts concerning Lax representations: the Darboux transformations of the Lax representation, from which the integrable differential-difference equations are derived, and the derivation of the recursion operator for the resulting equations with the usage of Darboux transformations. They are illustrated by two typical examples: the nonlinear Schrödinger equation (NLS) and the deformation of the derivative NLS equation corresponding to the dihedral reduction group \(\mathbb{D}_2\).
The article is completed by an extensive list of integrable differential-difference equations, containing except for the equations themselves, their Hamiltonian structures, recursion operators, nonlinear generalized symmetries and Lax representations, and also links with other equations and the weakly nonlocal inverses of recursion operators when they exist; partial results on the master symmetries are also included. However the list is far from complete. A similar list for \(1+1\) integrable evolutionary equations is presented in the article of J. P. Wang [J. Nonlinear Math. Phys. 9, Suppl. 1, 213–233 (2002)].

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
39A14 Partial difference equations

References:

[1] H. D. Wahlquist and F. B. Estabrook, Phys. Rev. Lett., 31, 1386–1390 (1973). · doi:10.1103/PhysRevLett.31.1386
[2] S. Lombardo and A. V. Mikhailov, J. Phys. A, 37, 7727–7742 (2004); arXiv:nlin/0404013v1 (2004). · Zbl 1067.37095 · doi:10.1088/0305-4470/37/31/006
[3] S. Lombardo and A. V. Mikhailov, Commun. Math. Phys., 258, 179–202 (2005); arXiv:math-ph/0407048v2 (2004). · Zbl 1129.17013 · doi:10.1007/s00220-005-1334-5
[4] S. Lombardo, ”Reductions of integrable equations and automorphic Lie algebra,” Doctoral dissertation, Univ. of Leeds, Leeds (2004).
[5] R. T. Bury, ”Automorphic Lie algebras, corresponding integrable systems, and their soliton solutions,” Doctoral dissertation, Univ. of Leeds, Leeds (2010).
[6] A. V. Mikhailov, JETP Lett., 30, 414–418 (1979).
[7] A. V. Mikhailov, JETP Lett., 32, 174–178 (1980).
[8] A. V. Mikhailov, Phys. D, 3, 73–117 (1981). · Zbl 1194.37113 · doi:10.1016/0167-2789(81)90120-2
[9] C. Rogers and W. K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory (Cambridge Texts Appl. Math., Vol. 30), Cambridge Univ. Press, Cambridge (2002).
[10] V. Volterra, Leşoons sur la théorie mathématique de la lutte pour la vie, Gauthier-Villars, Paris (1931).
[11] A. V. Mikhailov, J. P. Wang, and P. Xenitidis, Nonlinearity, 24, 2079–2097 (2011); arXiv:1009.2403v1 [nlin.SI] (2010). · Zbl 1416.65521 · doi:10.1088/0951-7715/24/7/009
[12] A. Ya. Maltsev and S. P. Novikov, Phys. D, 156, 53–80 (2001). · Zbl 0991.37041 · doi:10.1016/S0167-2789(01)00280-9
[13] J. P. Wang, Stud. Appl. Math., 129, 309–327 (2012). · Zbl 1282.35341 · doi:10.1111/j.1467-9590.2012.00556.x
[14] E. K. Sklyanin, Funct. Anal. Appl., 16, 263–270 (1982). · Zbl 0513.58028 · doi:10.1007/BF01077848
[15] H. Zhang, G.-Z. Tu, W. Oevel, and B. Fuchssteiner, J. Math. Phys., 32, 1908–1918 (1991). · Zbl 0736.35124 · doi:10.1063/1.529205
[16] J.-P. Wang, J. Nonlinear Math. Phys., 9,Suppl. 1, 213–233 (2002). · Zbl 1362.37137 · doi:10.2991/jnmp.2002.9.s1.18
[17] V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov Theory of Solitons: The Inverse Scattering Method, Plenum, New York (1984). · Zbl 0598.35002
[18] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM Stud. Appl. Math., Vol. 4), SIAM, Philadelphia (1981). · Zbl 0472.35002
[19] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering (London Math. Soc. Lect. Note Ser., Vol. 149), Cambridge Univ. Press, Cambridge (1991). · Zbl 0762.35001
[20] A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, ”The symmetry approach to classification of integrable equations,” in: What is Integrability? (V. E. Zakharov, ed.), Springer, Berlin (1991), pp. 115–184. · Zbl 0741.35070
[21] A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Commun. Math. Phys., 115, 1–19 (1988). · Zbl 0659.35091 · doi:10.1007/BF01238850
[22] V. É. Adler, A. B. Shabat, and R. I. Yamilov, Theor. Math. Phys., 125, 1603–1661 (2000). · Zbl 1029.37041 · doi:10.1023/A:1026602012111
[23] J. A. Sanders and J. P. Wang, J. Diff. Eq., 147, 410–434 (1998). · Zbl 0951.37026 · doi:10.1006/jdeq.1998.3452
[24] V. E. Zakharov and A. B. Shabat, JETP, 34, 62–69 (1971).
[25] M. Gürses, A. Karasu, and V. V. Sokolov, J. Math. Phys., 40, 6473–6490 (1999). · Zbl 0977.37038 · doi:10.1063/1.533102
[26] V. É. Adler, ”Classification of discrete integrable equations,” Doctoral dissertation, Landau Inst. Theor. Phys., Chernogolovka (2010).
[27] J. L. Cieśliński, J. Phys. A, 42, 404003 (2009). · Zbl 1193.37096 · doi:10.1088/1751-8113/42/40/404003
[28] S. Konstantinou-Rizos, A. V. Mikhailov, and P. Xenitidis, ”Reduction groups and related integrable difference systems of the NLS type,” J. Math. Phys. (to appear). · Zbl 1328.35213
[29] D. Zhang and D. Chen, J. Phys. A, 35, 7225–7241 (2002). · Zbl 1039.37049 · doi:10.1088/0305-4470/35/33/316
[30] D. K. Demskoi and V. V. Sokolov, Nonlinearity, 21, 1253–1264 (2008); arXiv:nlin/0607071v1 (2006). · Zbl 1201.37097 · doi:10.1088/0951-7715/21/6/006
[31] J. P. Wang, J. Math. Phys., 50, 023506 (2009); arXiv:0809.3899v1 [nlin.SI] (2008). · Zbl 1202.37090 · doi:10.1063/1.3054921
[32] V. S. Gerdjikov, G. G. Grahovski, A. V. Mikhailov, and T. I. Valchev, SIGMA, 1107, 096 (2011); arXiv:1108.3990v2 [nlin.SI] (2011).
[33] A. S. Fokas and B. Fuchssteiner, Lett. Nuovo Cimento (2), 28, 299–303 (1980). · doi:10.1007/BF02798794
[34] P. J. Olver, J. Math. Phys., 18, 1212–1215 (1977). · Zbl 0348.35024 · doi:10.1063/1.523393
[35] A. V. Mikhailov, J. P. Wang, and P. Xenitidis, Theor. Math. Phys., 167, 421–443 (2011); arXiv:1004.5346v1 [nlin.SI] (2010). · Zbl 1277.39013 · doi:10.1007/s11232-011-0033-y
[36] B. A. Kupershmidt, Astérisque, 123 (1985).
[37] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations: Nonlinear Science, Theory and Applications, Wiley, Chichester (1993).
[38] A. De Sole and V. G. Kač, ”Non-local Poisson structures and applications to the theory of integrable systems,” arXiv:1302.0148v2 [math-ph] (2013).
[39] I. Cherdantsev and R. Yamilov, ”Local master symmetries of differential-difference equations,” in: Symmetries and Integrability of Difference Equations (CRM Proc. Lect. Notes., Vol. 9, D. Levi, L. Vinet, P. Winternitz, eds.), Amer. Math. Soc., Providence, R. I. (1996), pp. 51–61. · Zbl 0857.22014
[40] B. Fuchssteiner and W.-X. Ma, ”An approach to master symmetries of lattice equations,” in: Symmetries and Integrability of Difference Equations (London Math. Soc. Lect. Note Ser., Vol. 255, P. A. Clarkson and F. W. Nijhoff, eds.), Cambridge Univ. Press, Cambridge (1999), pp. 247–260. · Zbl 0923.58040
[41] W. Oevel, H. Zhang, and B. Fuchssteiner, Progr. Theoret. Phys., 81, 294–308 (1989). · doi:10.1143/PTP.81.294
[42] I. Yu. Cherdantsev and R. I. Yamilov, Phys. D, 87, 140–144 (1995). · Zbl 1194.35485 · doi:10.1016/0167-2789(95)00167-3
[43] R. I. Yamilov, J. Phys. A, 39, R541–R623 (2006). · Zbl 1105.35136 · doi:10.1088/0305-4470/39/45/R01
[44] D. Levi and O. Ragnisco, Lett. Nuovo Cimento (2), 22, 691–696 (1978). · doi:10.1007/BF02813707
[45] O. I. Bogoyavlensky, Phys. Lett. A, 134, 34–38 (1988). · doi:10.1016/0375-9601(88)90542-7
[46] S. V. Manakov, Sov. Phys. JETP, 40, 269–274 (1975).
[47] R. Hirota, J. Phys. Soc. Japan, 35, 289–294 (1973). · doi:10.1143/JPSJ.35.289
[48] T. Tsuchida and M. Wadati, Chaos Solitons Fractals, 9, 869–873 (1998). · Zbl 0956.37050 · doi:10.1016/S0960-0779(97)00189-6
[49] R. I. Yamilov, Russ. Math. Surveys, 38, 155–156 (1983). · Zbl 0539.35024 · doi:10.1070/RM1983v038n03ABEH003494
[50] A. Tongas, D. Tsoubelis, and P. Xenitidis, J. Phys. A, 40, 13353–13384 (2007); arXiv:0707.3730v1 [nlin.SI] (2007). · Zbl 1131.39018 · doi:10.1088/1751-8113/40/44/015
[51] P. Xenitidis, ”Integrability and symmetries of difference equations: The Adler-Bobenko-Suris case,” in: Proc. 4th Intl. Workshop in Group Analysis of Differential Equations and Integrable Systems (Protaras, Cyprus, 26–30 October 2008), http://www2.ucy.ac.cy/\(\sim\)symmetry/Proceedings2008.pdf (2008), pp. 226–242; arXiv: 0902.3954v1 [nlin.SI] (2009).
[52] A. B. Shabat and R. I. Yamilov, Phys. Lett. A, 130, 271–275 (1988). · doi:10.1016/0375-9601(88)90608-1
[53] A. V. Mikhailov and J. P. Wang, Phys. Lett. A, 375, 3960–3963 (2011); arXiv:1105.1269v1 [nlin.SI] (2011). · Zbl 1254.37046 · doi:10.1016/j.physleta.2011.09.018
[54] K. Narita, J. Math. Soc. Japan, 51, 1682–1685 (1982).
[55] Y. Itoh, Progr. Theoret. Phys., 78, 507–510 (1987). · doi:10.1143/PTP.78.507
[56] A. K. Svinin, J. Phys. A, 42, 454021 (2009); arXiv:0902.4517v3 [nlin.SI] (2009). · Zbl 1204.37072 · doi:10.1088/1751-8113/42/45/454021
[57] A. K. Svinin, J. Phys. A, 44, 165206 (2011); arXiv:1101.3808v3 [nlin.SI] (2011). · Zbl 1250.37027 · doi:10.1088/1751-8113/44/16/165206
[58] V. É. Adler, ”On a discrete analog of the Tzitzeica equation,” arXiv:1103.5139v1 [nlin.SI] (2011).
[59] V. É. Adler and V. V. Postnikov, ”Differential-difference equations associated with the fractional Lax operators,” arXiv:1107.2305v1 [nlin.SI] (2011). · Zbl 1230.34013
[60] M. Toda, J. Phys. Soc. Japan, 23, 501–506 (1967). · doi:10.1143/JPSJ.23.501
[61] H. Flaschka, Phys. Rev. B (3), 9, 1924–1925 (1974). · Zbl 0942.37504 · doi:10.1103/PhysRevB.9.1924
[62] R. Hirota, J. Phys. Soc. Japan, 35, 286–288 (1973). · doi:10.1143/JPSJ.35.286
[63] S. N. M. Ruijsenaars, Commun. Math. Phys., 133, 217–247 (1990). · Zbl 0719.58019 · doi:10.1007/BF02097366
[64] Y. B. Suris, J. Phys. A, 30, 1745–1761 (1997). · Zbl 1001.37508 · doi:10.1088/0305-4470/30/5/035
[65] W. Oevel, B. Fuchssteiner, H. Zhang, and O. Ragnisco, J. Math. Phys., 30, 2664–2670 (1989). · Zbl 0699.58042 · doi:10.1063/1.528497
[66] Yu. B. Suris, Rev. Math. Phys., 11, 727–822 (1999). · Zbl 0965.37058 · doi:10.1142/S0129055X99000258
[67] Y. B. Suris and O. Ragnisco, Commun. Math. Phys., 200, 445–485 (1999). · Zbl 0939.37036 · doi:10.1007/s002200050537
[68] I. Merola, O. Ragnisco, and G.-Z. Tu, Inverse Probl., 10, 1315–1334 (1994). · Zbl 0815.35105 · doi:10.1088/0266-5611/10/6/009
[69] V. É. Adler and R. I. Yamilov, J. Phys. A, 27, 477–492 (1994). · Zbl 0826.35115 · doi:10.1088/0305-4470/27/2/030
[70] M. J. Ablowitz and J. F. Ladik, J. Math. Phys., 17, 1011–1018 (1976). · Zbl 0322.42014 · doi:10.1063/1.523009
[71] W. Hereman, J. A. Sanders, J. Sayers, and J. P. Wang, ”Symbolic computation of polynomial conserved densities, generalized symmetries, and recursion operators for nonlinear differential-difference equations,” in: Group Theory and Numerical Analysis (CRM Proc. Lect. Notes, Vol. 39, P. Winternitz, D. Gomez-Ullate, A. Iserles, D. Levi, P. J. Olver, R. Quispel, and P. Tempesta, eds.), Amer. Math. Soc., Providence, R. I. (2005), pp. 133–148. · Zbl 1080.65119
[72] Ü. Göktaş and W. Hereman, Math. Computat. Appl., 16, 1–12 (2011).
[73] M. Bruschi and O. Ragnisco, Inverse Problems, 5, 983–998 (1989). · Zbl 0694.35187 · doi:10.1088/0266-5611/5/6/007
[74] T. Tsuchida, J. Phys. A, 35, 7827–7847 (2002); arXiv:nlin/0105053v3 (2001). · Zbl 1040.37061 · doi:10.1088/0305-4470/35/36/310
[75] V. É. Adler, Theor. Math. Phys., 124, 897–908 (2000). · Zbl 0984.39010 · doi:10.1007/BF02551066
[76] A. B. Shabat and R. I. Yamilov, Leningrad Math. J., 2, 377–400 (1991).
[77] A. A. Belov and K. D. Chaltikian, Phys. Lett. B, 317, 64–72 (1993); arXiv:hep-th/9305096v1 (1993). · Zbl 0909.58018 · doi:10.1016/0370-2693(93)91571-4
[78] R. Sahadevan and S. Khousalya, J. Math. Anal. Appl., 280, 241–251 (2003). · Zbl 1038.37060 · doi:10.1016/S0022-247X(03)00032-5
[79] K. Hikami and R. Inoue, J. Phys. A, 30, 6911–6924 (1997). · Zbl 1042.17510 · doi:10.1088/0305-4470/30/19/026
[80] G. M. Beffa and J. P. Wang, ”Hamiltonian evolutions of twisted gons in \(\mathbb{R}\)\(\mathbb{P}\)n,” arXiv:1207.6524v2 [nlin.SI] (2012).
[81] M. Blaszak and K. Marciniak, J. Math. Phys., 35, 4661–4682 (1994). · Zbl 0823.58013 · doi:10.1063/1.530807
[82] V. É. Adler, A. I. Bobenko, and Yu. B. Suris, Commun. Math. Phys., 233, 513–543 (2003); arXiv:nlin/0202024v2 (2002).
[83] V. É. Adler, A. I. Bobenko, and Yu. B. Suris, Funct. Anal. Appl., 43, 3–17 (2009). · Zbl 1271.37048 · doi:10.1007/s10688-009-0002-5
[84] D. Levi and R. I. Yamilov, J. Phys. A, 44, 145207 (2011); arXiv:1011.0070v2 [nlin.SI] (2010). · Zbl 1225.37079 · doi:10.1088/1751-8113/44/14/145207
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.