×

Effect of intermediate principal stress on flat-ended punch problems. (English) Zbl 1293.74328

Summary: The intermediate principal stress has certain effects on the yield strength of metallic materials under complex stress states. The flat-ended punch problem is a classical and fundamental problem in plasticity theory and mechanical engineering in which the metal beneath a flat-ended punch is under complex stress states. Using the finite difference codes, fast Lagrangian analysis of continua and Unified Strength Theory, the effect of the intermediate principal stress on the flat-ended punch problem is analyzed in this paper. First, the limit pressures of strip and circular punches pressed into an elastoplastic and homogeneous metallic medium are calculated by the two-dimensional finite difference method. The problems of square and rectangular punches are analyzed by the three-dimensional finite difference method. Finally, the effect of the intermediate principal stress on flat-ended punch problems with different punch geometries is analyzed.

MSC:

74M15 Contact in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74S20 Finite difference methods applied to problems in solid mechanics

Software:

FEAPpv; FLAC
Full Text: DOI

References:

[1] Lode W.: Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel. Zeitschrift für Physik 36(11-12), 913-939 (1926) · doi:10.1007/BF01400222
[2] Taylor G.I., Quinney H.: The plastic distortion of metals. Philos. Trans. R. Soc. Lond. Ser. A 230, 323-362 (1931) · Zbl 0003.08003 · doi:10.1098/rsta.1932.0009
[3] Ivey H.J.: Plastic stress-strain relations and yield surfaces for aluminium alloys. J. Mech. Eng. Sci. 3(1), 15-31 (1961) · doi:10.1243/JMES_JOUR_1961_003_005_02
[4] Mair W.M., Pugh H.L.D.: Effect of pre-strain on yield surfaces in copper. J. Mech. Eng. Sci. 6(2), 150-163 (1964) · doi:10.1243/JMES_JOUR_1964_006_025_02
[5] Sakai M.: Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials. Acta Metallurgica et Materialia 41(6), 1751-1758 (1993) · doi:10.1016/0956-7151(93)90194-W
[6] Jeon E.C., Park J.S., Choi D.S. et al.: A method for estimating uncertainty of indentation tensile properties in instrumented indentation test. J. Eng. Mater. Technol. Trans. ASME 131(3), 1-6 (2009) · doi:10.1115/1.3120391
[7] Hill R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1950) · Zbl 0041.10802
[8] Prandtl, L.: Über die Härte plastischer Körper. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 74-85 (1920)
[9] Shield R.T.: On the plastic flow of metals under conditions of axial symmetry. Philos. Trans. R. Soc. Lond. Ser. A 233, 267-287 (1955) · Zbl 0067.17502 · doi:10.1098/rspa.1955.0262
[10] Cox A.D., Eason G., Hopkins H.G.: Axially symmetric plastic deformation in soils. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 254(1036), 1-45 (1961) · Zbl 0097.19102 · doi:10.1098/rsta.1961.0011
[11] Yu M.H.: Advances in strength theories for materials under complex stress state in the 20th century. Appl. Mech. Rev. ASME 55(3), 169-218 (2002) · doi:10.1115/1.1472455
[12] Yu M.H.: Unified Strength Theory and Its Applications. Springer, Berlin (2004) · Zbl 1059.74002 · doi:10.1007/978-3-642-18943-2
[13] Yu M.H., Ma G.W., Qiang H.F.: Generalized Plasticity. Springer, Berlin (2006)
[14] Yu, M.H., Li, J.C.: Computational Plasticity: With Emphasis on the Application of the Unified Strength Theory. Springer, Berlin (2012)
[15] ITASCA Consulting Group: FLAC-Fast Lagrangian Analysis of Continua, version 5.0, User’s Manual, Minneapolis (2005)
[16] Koiter W.T.: Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with singular yield surface. Q. Appl. Math. 11, 350-354 (1953) · Zbl 0053.14003
[17] Sloan S.W., Booker J.R.: Removal of singularities in Tresca and Mohr-Coulomb yield functions. Commun. Appl. Numer. Methods 2, 173-179 (1986) · Zbl 0585.73055 · doi:10.1002/cnm.1630020208
[18] Zienkiewicz O.C., Taylor R.L.: The Finite Element Method for Solid and Structural Mechanics. Elsevier, Amsterdam (2009) · Zbl 1084.74001
[19] Frydman S., Burd H.J.: Numerical studies of bearing-capacity factor Nγ. J. Geotech. Geoenviron. Eng. ASCE 123(1), 20-29 (1997) · doi:10.1061/(ASCE)1090-0241(1997)123:1(20)
[20] Tan T.M., Li S., Chou P.C.: Finite element solution of Prandtl’s flat punch problem. Finite Elem. Anal. Des. 1(6), 173-186 (1989) · doi:10.1016/0168-874X(89)90042-5
[21] Riccardi B., Montanari R., Moreschi L.F. et al.: Mechanical characterisation of fusion materials by indentation test. Fusion Eng. Des. 58(59), 755-759 (2001) · doi:10.1016/S0920-3796(01)00561-0
[22] Riccardi B., Montanari R.: Indentation of metals by a flat-ended cylindrical punch. Mater. Sci. Eng. A 381, 281-291 (2004) · doi:10.1016/j.msea.2004.04.041
[23] Gondi P., Montanari R., Sili A.: Small-scale nondestructive stress-strain and creep tests feasible during irradiation. J. Nucl. Mater. 212-215(Part B), 1688-1692 (1994) · doi:10.1016/0022-3115(94)91114-2
[24] Gondi P., Montanari R., Sili A., Foglietta S., Donato A., Filacchioni G.: Applicability of the FIMEC indentation test to characterize materials irradiated in the future IFMIF high intensity neutron irradiated source. Fusion Technol. 2, 1607-1610 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.