×

The sharp lower bound of the first eigenvalue of the sub-Laplacian on a quaternionic contact manifold in dimension seven. (English) Zbl 1285.53029

The authors provide an explicit lower bound for all eigenvalues of the sub-Laplacian operator \(\Delta\) defined in a seven-dimensional compact quaternionic contact (abridged by qc) manifold \((M,g,\mathbb Q)\). Loosely speaking, this means that \(M\) is a seven-dimensional manifold endowed with a smooth section \(g\) of positive definite quadratic form on the three-codimensional horizontal distribution \(H\) (equipped with an explicit Lie group structure), and \(\mathbb Q\) is a vector bundle over \(M\) of rank three and made up by endomorphisms of \(H\). Locally, \(\mathbb Q\) is similar to the set of unit quaternions. The case of a compact qc-manifold of dimension bigger than seven was already treated by the same authors. From the Biquards connection, the authors define the qc-Ricci tensor on the section of the tangent bundle \(TM\), also they define the normalized qc-scalar, denoted by \(S\). Accordingly, on \(H\) they provide the qc-Lichnerowicz type inequality. The authors also set up the \(P\)-function of a smooth function defined on \(M\) and it is given in terms of the third-order covariant derivative \(S\), the three generators of \(\mathbb Q\) and the torsion which is defined explicitly.
As an application, they show the positivity of the \(P\)-function of any eigenfunction of \(\Delta\) defined on a seven-dimensional compact qc-Einstein manifold with \(S=2\). Thus, the principal theorem 1.1 states that if the qc-Lichnerowicz type inequality is satisfied and the \(P\)-function of each eigenfunction is positive, then its associated eigenvalue has an accurate lower bound.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
53C17 Sub-Riemannian geometry
35P15 Estimates of eigenvalues in context of PDEs
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

References:

[1] Ivanov, S.; Petkov, A.; Vassilev, D., The sharp lower bound of the first eigenvalue of the sub-Laplacian on a quaternionic contact manifold, J. Geom. Anal. (2012), arXiv:1112.0779 · Zbl 1303.53060
[2] Lichnerowicz, A., (Géométrie des Groupes de Transformations. Géométrie des Groupes de Transformations, Travaux et Recherches Mathematiques, vol. III (1958), Dunod: Dunod Paris) · Zbl 0096.16001
[3] Greenleaf, A., The first eigenvalue of a subLaplacian on a pseudohermitian manifold, Comm. Partial Differential Equations, 10, 2, 191-217 (1985) · Zbl 0563.58034
[4] Li, S.-Y.; Luk, H.-S., The sharp lower bound for the first positive eigenvalue of a sub-Laplacian on a pseudo-Hermitian manifold, Proc. Amer. Math. Soc., 132, 3, 789-798 (2004) · Zbl 1041.32024
[5] Chiu, H.-L., The sharp lower bound for the first positive eigenvalue of the subLaplacian on a pseudohermitian 3-manifold, Ann. Global Anal. Geom., 30, 1, 81-96 (2006) · Zbl 1098.32017
[6] Obata, M., Certain conditions for a Riemannian manifold to be iosometric with a sphere, J. Math. Soc. Japan, 14, 3, 333-340 (1962) · Zbl 0115.39302
[7] Ivanov, S.; Minchev, I.; Vassilev, D., Extremals for the Sobolev inequality on the seven dimensional quaternionic Heisenberg group and the quaternionic contact Yamabe problem, J. Eur. Math. Soc. (JEMS), 12, 4, 1041-1067 (2010) · Zbl 1196.53023
[8] Ivanov, S.; Minchev, I.; Vassilev, D., Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem, Mem. Amer. Math. Soc. (2013), in press. math.DG/0611658
[9] Cartan, E., Sur la geometrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes I, Ann. Mat. Pura Appl. (4). Ann. Mat. Pura Appl. (4), Ann. Sc. Norm. Super. Pisa Cl. Sci. (2), 1, 4, 333-354 (1932) · Zbl 0005.37401
[10] Chern, S. S.; Moser, J., Real hypersurfaces in complex manifolds, Acta Math., 133, 219-271 (1974) · Zbl 0302.32015
[11] Ivanov, S.; Vassilev, D.; Zamkovoy, S., Conformal paracontact curvature and the local flatness theorem, Geom. Dedicata, 144, 79-100 (2010) · Zbl 1195.53048
[12] Ivanov, S.; Vassilev, D., Conformal quaternionic contact curvature and the local sphere theorem, J. Math. Pures Appl., 93, 277-307 (2010) · Zbl 1194.53044
[13] Chang, S.-C.; Chiu, H.-L., On the estimate of the first eigenvalue of a subLaplacian on a pseudohermitian 3-manifold, Pacific J. Math., 232, 2, 269-282 (2007) · Zbl 1152.58026
[14] Chang, S.-C.; Chiu, H.-L., On the \(C R\) analogue of Obata’s theorem in a pseudohermitian 3-manifold, Math. Ann., 345, 33-51 (2009) · Zbl 1182.32012
[15] Chang, S.-C.; Chiu, H.-L., Nonnegativity of \(C R\) Paneitz operator and its application to the \(C R\) Obata’s theorem, J. Geom. Anal., 19, 261-287 (2009) · Zbl 1205.32026
[16] Barletta, E., The Lichnerowicz theorem on \(C R\) manifolds, Tsukuba J. Math., 31, 1, 77-97 (2007) · Zbl 1138.32020
[17] Chang, S.-C.; Wu, C.-T., The entropy formulas for the \(C R\) heat equation and their applications on pseudohermitian \((2 n + 1)\)-manifolds, Pacific J. Math., 246, 1, 1-29 (2010) · Zbl 1206.32016
[18] Chang, S.-C.; Cheng, J.-H.; Chiu, H.-L., A fourth order curvature flow on a \(C R 3\)-manifold, Indiana Univ. Math. J., 56, 4, 1793-1826 (2007) · Zbl 1129.53046
[19] Ivanov, S.; Vassilev, D., Quaternionic contact manifolds with a closed fundamental 4-form, Bull. Lond. Math. Soc., 42, 6, 1021-1030 (2010) · Zbl 1221.53080
[20] Ivanov, S.; Vassilev, D., Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem, xviii+219 (2011), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ, 981-4295-70-1 · Zbl 1228.53001
[21] Ivanov, S.; Vassilev, D., An Obata type result for the first eigenvalue of the sub-Laplacian on a \(C R\) manifold with a divergence free torsion, J. Geom., 103, 3, 475-504 (2012) · Zbl 1266.32043
[22] Li, S.-Y.; Wang, X., An Obata type theorem in \(C R\) geometry · Zbl 1277.32038
[23] Ivanov, S.; Vassilev, D., An Obata-type theorem on a three dimensional \(C R\) manifold, Glasg. Math. J. (2013), in press. arXiv:1208.1240 · Zbl 1293.53060
[24] Sperb, René P., (Maximum Principles and their Applications. Maximum Principles and their Applications, Mathematics in Science and Engineering, vol. 157 (1981), Academic Press, Inc., Harcourt Brace Jovanovich, Publishers: Academic Press, Inc., Harcourt Brace Jovanovich, Publishers New York, London), ix+224 · Zbl 0454.35001
[25] Ivanov, S.; Minchev, I.; Vassilev, D., The optimal constant in the \(L^2\) Folland-Stein inequality on the quaternionic Heisenberg group, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XI, 1-18 (2012) · Zbl 1276.53057
[26] Astengo, F.; Cowling, M.; Di Blasio, B., The Cayley transform and uniformly bounded representations, J. Funct. Anal., 213, 2, 241-269 (2004) · Zbl 1054.22006
[27] Biquard, O., Métriques d’Einstein asymptotiquement symétriques, Astérisque, 265 (2000) · Zbl 0967.53030
[28] Duchemin, D., Quaternionic contact structures in dimension 7, Ann. Inst. Fourier (Grenoble), 56, 4, 851-885 (2006) · Zbl 1122.53025
[29] Capria, M.; Salamon, S., Yang-Mills fields on quaternionic spaces, Nonlinearity, 1, 4, 517-530 (1988) · Zbl 0681.53037
[30] Wang, W., The Yamabe problem on quaternionic contact manifolds, Ann. Mat. Pura Appl., 186, 2, 359-380 (2007) · Zbl 1150.53007
[31] Graham, C. R.; Lee, J. M., Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J., 57, 697-720 (1988) · Zbl 0699.35112
[32] Lee, J., Pseudo-einstein structures on \(C R\) manifolds, Amer. J. Math., 110, 157-178 (1988) · Zbl 0638.32019
[33] Bedford, E.; Federbush, P., Pluriharmonic boundary values, Tohoku Math. J. (2), 26, 505-511 (1974) · Zbl 0298.31012
[34] Bedford, E., \((\partial \overline{\partial})_b\) and the real parts of \(C R\) functions, Indiana Univ. Math. J., 29, 3, 333-340 (1980) · Zbl 0441.32008
[35] Graham, C. R., The Dirichlet problem for the Bergman Laplacian, II, Comm. Partial Differential Equations, 8, 6, 563-641 (1983) · Zbl 0527.35032
[36] Kashiwada, T., A note on Riemannian space with Sasakian 3-structure, Natur. Sci. Rep. Ochanomizu Univ., 22, 1-2 (1971) · Zbl 0228.53033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.