×

Higher integrability for nonlinear elliptic equations with variable growth. (English) Zbl 1284.35182

Summary: In this paper, based on the theory of variable exponent spaces, we study the regularity for a class of nonlinear elliptic equation with \(p(x)\)-Laplacian. Under suitable assumptions, we obtain a local gradient estimate in the Orlicz space for weak solution.

MSC:

35J60 Nonlinear elliptic equations
35D30 Weak solutions to PDEs
Full Text: DOI

References:

[1] Acerbi, E.; Mingione, G., Gradient estimates for a class of parabolic systems, Duke Math. J., 136, 285-320 (2007) · Zbl 1113.35105
[2] DiBenedetto, E.; Manfredi, J., On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math., 115, 1107-1134 (1993) · Zbl 0805.35037
[3] Iwaniec, T., Projections onto gradient fields and \(L^p\)-estimates for degenerated elliptic operators, Stud. Math., 75, 293-312 (1983) · Zbl 0552.35034
[4] Jia, H. L.; Li, D. S.; Wang, L. H., Regularity of Orlicz spaces for the Poisson equation, Manuscripta Math., 122, 265-275 (2007) · Zbl 1152.35019
[5] Kinnunen, J.; Zhou, S. L., A local estimate for nonlinear equations with discontinuous coefficients, Comm. Partial Differential Equations, 24, 11-12, 2043-2068 (1999) · Zbl 0941.35026
[6] Yao, F. P.; Sun, Y.; Zhou, S. L., Gradient estimates in Orlicz spaces for quasilinear elliptic equation, Nonlinear Anal., 69, 2553-2565 (2008) · Zbl 1158.35039
[7] Acerbi, E.; Mingione, G., Gradient estimates for the \(p(x)\)-Laplacean system, J. Reine Angew. Math., 584, 117-148 (2005) · Zbl 1093.76003
[8] Adams, R. A.; Fournier, J. J.F., Sobolev Spaces (2003), Academic Press: Academic Press New York · Zbl 1098.46001
[9] Adamowicz, T.; Hästö, P., Harnack’s inequality and the strong \(p(x)\)-Laplacian, J. Differential Equations, 250, 3, 1631-1649 (2011) · Zbl 1205.35084
[10] Alves, C. O.; Souto, M. A.S., Existence of solutions for a class of problems in \(R^N\) involving \(p(x)\)-Laplacian, Prog. Nonlinear Differ. Equ. Appl., 66, 17-32 (2005) · Zbl 1193.35082
[11] Antontsev, S.; Chipot, M.; Xie, Y., Uniquenesss results for equation of the \(p(x)\)-Laplacian type, Adv. Math. Sc. Appl., 17, 287-304 (2007) · Zbl 1132.35362
[12] Chabrowski, J.; Fu, Y., Existence of solutions for \(p(x)\)-Laplacian problems on a bounded domain, J. Math. Anal. Appl.. J. Math. Anal. Appl., J. Math. Anal. Appl., 323, 1483-618 (2006), (erratum)
[13] Fan, X. L.; Han, X., Existence and multiplicity of solutions for \(p(x)\)-Laplacian equations in \(R^N\), Nonlinear Anal., 59, 173-188 (2004) · Zbl 1134.35333
[14] Fu, Y. Q.; Zhang, X., Multiple solutions for a class of \(p(x)\)-Laplacian equations in \(R^N\) involving the critical exponent, Proc. R. Soc. A, 466, 1667-1686 (2010) · Zbl 1189.35128
[15] Mihăilescu, M.; Rădulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. A, 462, 2625-2641 (2006) · Zbl 1149.76692
[16] Mihăilescu, M.; Rădulescu, V., On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 135, 2929-2937 (2007) · Zbl 1146.35067
[17] Zhang, C.; Zhou, S. L., Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and \(L^1\) data, J. Differential Equations, 248, 6, 1376-1400 (2010) · Zbl 1195.35097
[19] Kováčik, O.; Rákosník, J., On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\), Czechoslovak Math. J., 41, 592-618 (1991) · Zbl 0784.46029
[20] Růz˘ic˘ka, M., Electro-Rheological Fluids: Modeling and Mathematical Theory (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0968.76531
[21] Chen, Y.; Levine, S.; Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66, 1383-1406 (2006) · Zbl 1102.49010
[22] Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M., (Legesgue and Sobolev Spaces with Variable Exponents. Legesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017 (2011), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1222.46002
[23] Stein, E. M., Harmonic Analysis (1993), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0821.42001
[24] Chen, Y. Z.; Wu, L. C., Second Order Elliptic Partial Differential Equations and Elliptic Systems (1998), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0902.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.