×

Stability of discrete breathers in nonlinear Klein-Gordon type lattices with pure anharmonic couplings. (English) Zbl 1278.82059

Summary: We consider the discrete breathers in one-dimensional nonlinear Klein-Gordon type lattices with pure anharmonic couplings. A discrete breather in the limit of vanishing couplings, i.e., the anti-continuous limit, consists of a number of in-phase or anti-phase excited particles, separated by particles at rest. Existence of the discrete breathers is proved for weak couplings by continuation from the anti-continuous limit. We prove a theorem which determines the linear stability of the discrete breathers. The theorem shows that the stability or instability of a discrete breather depends on the phase difference and distance between the two sites in each pair of adjacent excited sites in the anti-continuous solution. It is shown that there are two types of the dependence determined by the sign of \(\alpha \varepsilon\), where {\(\alpha\)} and \(\varepsilon\) are parameters such that positive (respectively, negative) {\(\alpha\)} represents hard (respectively, soft) on-site nonlinearity and positive (respectively, negative) \(\varepsilon\) represents attractive (respectively, repulsive) couplings.{
©2012 American Institute of Physics}

MSC:

82D25 Statistical mechanics of crystals
35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
39A12 Discrete version of topics in analysis
35B35 Stability in context of PDEs
Full Text: DOI

References:

[1] DOI: 10.1143/PTPS.94.242 · doi:10.1143/PTPS.94.242
[2] DOI: 10.1103/PhysRevLett.61.970 · doi:10.1103/PhysRevLett.61.970
[3] DOI: 10.1103/PhysRevLett.84.741 · doi:10.1103/PhysRevLett.84.741
[4] DOI: 10.1103/PhysRevLett.84.745 · doi:10.1103/PhysRevLett.84.745
[5] DOI: 10.1103/PhysRevLett.81.3383 · doi:10.1103/PhysRevLett.81.3383
[6] DOI: 10.1103/PhysRevLett.90.044102 · doi:10.1103/PhysRevLett.90.044102
[7] DOI: 10.1016/j.physleta.2009.02.005 · doi:10.1016/j.physleta.2009.02.005
[8] DOI: 10.1143/JPSJ.59.3037 · doi:10.1143/JPSJ.59.3037
[9] DOI: 10.1143/JPSJ.60.947 · doi:10.1143/JPSJ.60.947
[10] DOI: 10.1209/0295-5075/78/10004 · doi:10.1209/0295-5075/78/10004
[11] DOI: 10.1016/S0167-2789(98)00062-1 · Zbl 1030.34501 · doi:10.1016/S0167-2789(98)00062-1
[12] DOI: 10.1016/j.physleta.2004.09.049 · Zbl 1123.37322 · doi:10.1016/j.physleta.2004.09.049
[13] DOI: 10.1016/j.wavemoti.2007.04.004 · Zbl 1231.82041 · doi:10.1016/j.wavemoti.2007.04.004
[14] DOI: 10.1016/S0167-2789(98)00079-7 · doi:10.1016/S0167-2789(98)00079-7
[15] DOI: 10.1103/PhysRevE.68.066608 · doi:10.1103/PhysRevE.68.066608
[16] DOI: 10.1016/S0167-2789(96)00261-8 · Zbl 1194.34059 · doi:10.1016/S0167-2789(96)00261-8
[17] DOI: 10.1016/S0370-1573(97)00068-9 · doi:10.1016/S0370-1573(97)00068-9
[18] DOI: 10.1016/j.physd.2005.12.020 · Zbl 1159.82312 · doi:10.1016/j.physd.2005.12.020
[19] DOI: 10.1016/j.physrep.2008.05.002 · doi:10.1016/j.physrep.2008.05.002
[20] DOI: 10.1088/0951-7715/7/6/006 · Zbl 0811.70017 · doi:10.1088/0951-7715/7/6/006
[21] DOI: 10.1088/0951-7715/10/6/003 · Zbl 0917.70022 · doi:10.1088/0951-7715/10/6/003
[22] DOI: 10.1103/PhysRevE.51.1503 · doi:10.1103/PhysRevE.51.1503
[23] DOI: 10.3934/dcdsb.2001.1.271 · Zbl 1092.37523 · doi:10.3934/dcdsb.2001.1.271
[24] DOI: 10.1103/PhysRevE.66.066602 · doi:10.1103/PhysRevE.66.066602
[25] DOI: 10.1007/s00332-002-0525-x · Zbl 1185.37158 · doi:10.1007/s00332-002-0525-x
[26] DOI: 10.1016/j.physd.2004.05.005 · Zbl 1081.82003 · doi:10.1016/j.physd.2004.05.005
[27] DOI: 10.1016/j.physd.2005.07.021 · Zbl 1088.39004 · doi:10.1016/j.physd.2005.07.021
[28] DOI: 10.1088/0951-7715/24/1/015 · Zbl 1216.37018 · doi:10.1088/0951-7715/24/1/015
[29] DOI: 10.1587/nolta.3.52 · doi:10.1587/nolta.3.52
[30] DOI: 10.1016/S0167-2789(03)00064-2 · Zbl 1028.35127 · doi:10.1016/S0167-2789(03)00064-2
[31] DOI: 10.1088/0951-7715/18/2/016 · Zbl 1067.37109 · doi:10.1088/0951-7715/18/2/016
[32] DOI: 10.1088/0951-7715/22/9/011 · Zbl 1179.37103 · doi:10.1088/0951-7715/22/9/011
[33] DOI: 10.1103/PhysRevE.60.6218 · doi:10.1103/PhysRevE.60.6218
[34] DOI: 10.1103/PhysRevE.62.7540 · doi:10.1103/PhysRevE.62.7540
[35] DOI: 10.1103/PhysRevE.65.017601 · doi:10.1103/PhysRevE.65.017601
[36] DOI: 10.1103/PhysRevE.65.067601 · doi:10.1103/PhysRevE.65.067601
[37] DOI: 10.1103/PhysRevE.72.056607 · doi:10.1103/PhysRevE.72.056607
[38] DOI: 10.1103/PhysRevLett.94.045503 · doi:10.1103/PhysRevLett.94.045503
[39] DOI: 10.1007/978-1-4757-4073-8 · doi:10.1007/978-1-4757-4073-8
[40] DOI: 10.1088/0951-7715/10/3/006 · Zbl 0905.39004 · doi:10.1088/0951-7715/10/3/006
[41] DOI: 10.1016/S0167-2789(03)00097-6 · Zbl 1024.37037 · doi:10.1016/S0167-2789(03)00097-6
[42] Jacobson N., Basic Algebra I (2009) · Zbl 0284.16001
[43] Krantz S. G., The Implicit Function Theorem: History, Theory, and Applications (2002) · Zbl 1012.58003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.