×

The kinetic boundary layer for the linearized Boltzmann equation around an absorbing sphere. (English) Zbl 1083.82529

Summary: We construct approximate solutions of the linearized Boltzmann equation for a gas outside of a completely absorbing sphere, a simple model for a liquid droplet growing in a supersaturated vapor. The solutions are linear combinations of two Chapman-Enskog-type solutions, which carry heat and particle currents, and boundary layer eigenfunctions that decay with increasing distance from the sphere on a distance of the order of a mean free path. To construct the boundary layer eigenfunctions and the linear combination that satisfies the boundary condition at the sphere, we expand the solution in Burnett functions and truncate the resulting system of equations for the expansion coefficients. For one particular truncation prescription, which generalizes Grad’s 13-moment scheme, good initial convergence with increasing order of truncation is obtained for both moderately small and large radii of the sphere; the results for small radii extrapolate smoothly toward the known limit of zero radius. We present results for the reaction rate (the particle current arriving at the sphere divided by the density at infinity) and for the density and temperature profiles in the boundary layer. The explicit calculations are carried out for Maxwell molecules, but the method appears to be suitable for more general intermolecular potentials.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
Full Text: DOI

References:

[1] S. Chapman,Proc. R. Soc. Lond. A 93:1 (1916-1917); D. Enskog, Thesis, Uppsala (1917). [Both reprinted in S. G. Brush,Kinetic Theory, Vol. 3 (Pergamon, Oxford, 1972)].
[2] S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, 1970). · Zbl 0063.00782
[3] N. G. van Kampen,J. Stat. Phys. 46:709 (1987). · Zbl 0681.76079 · doi:10.1007/BF01013381
[4] S. K. Loyalka,Phys. Fluids 14:2291 (1971), and references therein. · Zbl 0247.76069 · doi:10.1063/1.1693331
[5] K. Frankowski, Z. Alterman, and C. L. Pekeris,Phys. Fluids 8:245 (1965). · Zbl 0131.45107 · doi:10.1063/1.1761217
[6] H. Vestner and L. Waldmann,Z. Naturforsch. 32a:667 (1977).
[7] C. Cercignani,Mathematical Methods in Kinetic Theory (Plenum Press, New York, 1969). · Zbl 0191.25103
[8] M. J. Lindenfeld and B. Shizgal,Phys. Rev. A 27:1657 (1983). · doi:10.1103/PhysRevA.27.1657
[9] C. Cercignani,Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975);The Boltzmann Equation and Its Applications (Springer, New York, 1988). · Zbl 0403.76065
[10] S. Waldenstrøm, K. J. Mork, and K. Razi Naqvi,Phys. Rev. A 28:1659 (1983). · Zbl 1055.81528 · doi:10.1103/PhysRevA.28.1659
[11] D. C. Sahni,Phys. Rev. A 30:2056 (1984). · doi:10.1103/PhysRevA.30.2056
[12] V. Kumar and S. V. G. Menon,J. Chem. Phys. 82:917 (1985). · doi:10.1063/1.448521
[13] M. E. Widder and U. M. Titulaer,J. Stat. Phys. 55:1109 (1989). · doi:10.1007/BF01041081
[14] D. Burnett,Proc. Lond. Math. Soc. 39:385 (1935). · Zbl 0012.19008 · doi:10.1112/plms/s2-39.1.385
[15] H. Grad,Commun. Pure Appl. Math. 2:331 (1949);5:257 (1952). · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[16] J. R. Dorfman and H. van Beijeren, inStatistical Mechanics, Part B, B. J. Berne, ed. (Plenum Press, New York, 1977).
[17] C. S. Wang Chang and G. E. Uhlenbeck,On the Propagation of Sound in Monatomic Gases (University of Michigan Press, Ann Arbor, Michigan, 1952). [Reprinted inStudies in Statistical Mechanics V, J. de Boer, and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1970)].
[18] L. Waldmann, inHandbuch der Physik, Vol. 12, S. Flügge, ed. (Springer, Berlin, 1958).
[19] Z. Alterman, K. Frankowski, and C. L. Pekeris,Astrophys. J. Suppl. Ser. 7:291 (1962). · doi:10.1086/190079
[20] M. E. Widder and U. M. Titulaer,J. Stat. Phys. 56:471 (1989). · doi:10.1007/BF01044447
[21] R. E. Marshak,Phys. Rev. 71:443 (1947). · Zbl 0032.37504 · doi:10.1103/PhysRev.71.443
[22] M. E. Widder, Diploma Thesis, Linz University (1988), unpublished.
[23] G. F. Hubmer, Doctoral Thesis, Linz University (1990).
[24] L. D. Landau and E. M. Lifshitz,Statistical Physics, 3rd ed.,Part 1, E. M. Lifshitz and L. P. Pitaevskii, eds. (Pergamon Press, Oxford, 1980), Chapter XV. · Zbl 0080.19702
[25] G. F. Hubmer and U. M. Titulaer, to be published.
[26] R. Beals and V. Protopopescu,J. Stat. Phys. 32:565 (1983). · Zbl 0571.35088 · doi:10.1007/BF01008957
[27] J. J. Duderstadt and W. R. Martin,Transport Theory (Wiley, New York, 1979), Section 2.2.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.