×

Spectral properties of a class of random walks on locally finite groups. (English) Zbl 1294.60007

A group is called locally finite if every finitely generated subgroup is finite. The authors study some spectral properties of random walks that are symmetric and invariant under translations on infinite countable groups with an emphasis on locally finite groups. Among other results it is shown that any locally compact unimodular non-compact amenable group carries an irreducible symmetric random walk whose return probability decay is faster than any given sub-exponential function. The authors also construct, on any infinite countable locally finite group, random walks with return probabilities whose decay is slower than any given positive function which goes to zero as time goes to infinity. At the end of the paper the authors provide a table that summarizes the computed results, showing for a given measure \(\mu\) on a locally finite group the spectral profile, the spectral density and the return probability associated to the measure \(\mu\).

MSC:

60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
62E10 Characterization and structure theory of statistical distributions
43A05 Measures on groups and semigroups, etc.

References:

[1] A. Bendikov and B. Bobikau, Long time behavior of random walks on abelian groups. Colloq. Math. 118 (2010), 445-464. · Zbl 1196.60079 · doi:10.4064/cm118-2-6
[2] A. Bendikov, T. Coulhon, and L. Saloff-Coste, Ultracontractivity and embedding into L1. Math. Ann. 337 (2007), 817-853. · Zbl 1132.47031 · doi:10.1007/s00208-006-0057-z
[3] A. Bendikov, C. Pittet, and R. Sauer, Spectral distribution and L2-isoperimetric pro- file of Laplace operators on groups. Math. Ann. 354 (2012), 43–72. · Zbl 1268.43001 · doi:10.1007/s00208-011-0724-6
[4] A. Bendikov and L. Saloff-Coste, Random walks on groups and discrete subordinations. Math. Nachr. 285 (2012), 580-605. · Zbl 1251.60004 · doi:10.1002/mana.201000059
[5] C. Berg and J. P. R. Christensen, Sur la norme des opérateurs de convolution. Invent. Math. 23 (1974), 173-178. · Zbl 0261.22009 · doi:10.1007/BF01405169
[6] S. Brofferio and W. Woess, On transience of card shuffling. Proc. Amer. Math. Soc. 129 (2001), 1513-1519. · Zbl 0964.60058 · doi:10.1090/S0002-9939-00-05632-X
[7] G. Carron, Inégalités isopérimétriques de Faber-Krahn et conséquences. In Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr. 1, Soc. Math. France, Paris 1996, 205-232. · Zbl 0884.58088
[8] T. Coulhon, Ultracontractivity and Nash type inequalities. J. Funct. Anal. 141 (1996), 510-539. · Zbl 0887.58009 · doi:10.1006/jfan.1996.0140
[9] T. Coulhon, A. Grigor’yan, and D. Levin, On isoperimetric profiles of product spaces. Comm. Anal. Geom. 11 (2003), 85-120. · Zbl 1085.53027
[10] T. Coulhon, A. Grigor’yan, and C. Pittet, A geometric approach to on-diagonal heat kernel lower bounds on groups. Ann. Inst. Fourier (Grenoble) 51 (2001), 1763-1827. · Zbl 1137.58307 · doi:10.5802/aif.1874
[11] D. A. Darling and P. Erd\Acute\Acute os, On the recurrence of a certain chain. Proc. Amer. Math. Soc. 19 (1968), 336-338. · Zbl 0164.47502 · doi:10.2307/2035522
[12] J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain ran- dom walks. Trans. Amer. Math. Soc. 284 (1984), 787-794. · Zbl 0512.39001 · doi:10.2307/1999107
[13] R. M. Dudley, Random walks on abelian groups. Proc. Amer. Math. Soc. 13 (1962), 447-450. · Zbl 0106.12403 · doi:10.2307/2034956
[14] A. Erschler, Isoperimetry for wreath products of Markov chains and multiplicity of self- intersections of random walks. Probab. Theory Related Fields 136 (2006), 560-586. · Zbl 1105.60009 · doi:10.1007/s00440-005-0495-7
[15] W. Feller, An introduction to probability theory and its applications . Vol. I, 3rd ed., John Wiley & Sons, New York 1968. · Zbl 0155.23101
[16] W. Feller, An introduction to probability theory and its applications . Vol. II, 2nd ed., John Wiley & Sons, New York 1971. · Zbl 0219.60003
[17] N. Fere\?ıg and S. A. Mol\check canov, Random walks on Abelian groups with an infinite number of generators. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1978 (1978), 22-29; English transl. Moscow Univ. Math. Bull. 33 (1978), No. 5, 17-23. · Zbl 0411.60073
[18] L. Flatto and J. Pitt, Recurrence criteria for random walks on countable Abelian groups. Illinois J. Math. 18 (1974), 1-19. · Zbl 0296.60045
[19] A. A. Grigor0yan, The heat equation on noncompact Riemannian manifolds. Mat. Sb. 182 (1991), No. 1, 55-87; English transl. Math. USSR-Sb. 72 (1992), 47-77. · Zbl 0776.58035 · doi:10.1070/SM1992v072n01ABEH001410
[20] A. Grigor’yan, Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoamericana 10 (1994), 395-452. · Zbl 0810.58040 · doi:10.4171/RMI/157
[21] M. Gromov, Geometric group theory (Sussex, 1991), vol. 2: Asymptotic invariants of infinite groups. London Math. Soc. Lecture Note Ser. 182, Cambridge University Press, Cambridge 1993. · Zbl 0841.20039
[22] M. Gromov and M. A. Shubin, Von Neumann spectra near zero. Geom. Funct. Anal. 1 (1991), 375-404. · Zbl 0751.58039 · doi:10.1007/BF01895640
[23] E. Hewitt and K. A. Ross, Abstract harmonic analysis . Vol. I, 2nd ed., Grundlehren Math. Wiss. 115, Springer-Verlag, Berlin 1979. · Zbl 0416.43001
[24] M. A. Kasymdzhanova, Recurrence of invariant Markov chains on a class of abelian groups. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1981 (1981), 3-7; English transl. Moscow Univ. Math. Bull. 36 (1981), No. 3, 1-6. · Zbl 0486.60013
[25] H. Kesten, Full Banach mean values on countable groups. Math. Scand. 7 (1959), 146-156. · Zbl 0092.26704
[26] G. F. Lawler, Recurrence and transience for a card shuffling model. Combin. Probab. Comput. 4 (1995), 133-142. · Zbl 0837.60062 · doi:10.1017/S096354830000153X
[27] W. Lück, L2 -invariants: theory and applications to geometry and K-theory. Ergeb Math. Grenzgeb. (3) 44, Springer-Verlag, Berlin 2002. · Zbl 1009.55001
[28] C. Pittet, The isoperimetric profile of homogeneous Riemannian manifolds. J. Differential Geom. 54 (2000), 255-302. · Zbl 1035.53069
[29] C. Pittet and L. Saloff-Coste, Amenable groups, isoperimetric profiles and random walks. In Geometric group theory down under (Canberra 1996), Walter de Gruyter, Berlin 1999, 293–316. · Zbl 0934.43001
[30] C. Pittet and L. Saloff-Coste, On the stability of the behavior of random walks on groups. J. Geom. Anal. 10 (2000), 713-737. · Zbl 0988.60517 · doi:10.1007/BF02921994
[31] C. Pittet and L. Saloff-Coste, Random walks on finite rank solvable groups. J. Eur. Math. Soc. (JEMS) 5 (2003), 313-342. · Zbl 1057.20026 · doi:10.1007/s10097-003-0054-4
[32] D. Revuz, Markov chains . 2nd ed., North-Holland Math. Library 11, North-Holland Publishing Co., Amsterdam 1984. · Zbl 0539.60073
[33] R. T. Rockafellar and R. Tyrrell, Convex analysis . Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. · Zbl 0932.90001
[34] L. Saloff-Coste, Sur la décroissance des puissances de convolution sur les groupes. Bull. Sci. Math. (2) 113 (1989), 3-21. · Zbl 0682.43004
[35] F. Spitzer, Principles of random walk . 2nd ed., Graduate Texts in Math. 34, Springer- Verlag, New York 1976. · Zbl 0979.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.