×

Bredon cohomological finiteness conditions for generalisations of Thompson groups. (English) Zbl 1295.20055

Thompson’s groups \(F\), \(T\) and \(G\) may be defined as automorphism groups of certain Cantor algebras. Using specific Cantor algebras, denoted by \(U_r(\Sigma)\), there are generalizations \(G_r(\Sigma)\) and \(T_r(\Sigma)\) of \(G\) and \(T\). The groups \(G_r(\Sigma)\) are defined as bijections of admissible subsets of \(U_r(\Sigma)\) and the groups \(T_r(\Sigma)\) are bijections that preserve the cyclic order. The admissible subsets of \(U_r(\Sigma)\) form a poset and the groups \(T_r(\Sigma)\) and \(G_r(\Sigma)\) act on its geometric realization \(|\mathcal U_r(\Sigma)|\).
The authors prove the following property of this space: Theorem. The space \(|\mathcal U_r(\Sigma)|\) is a model for the classifying space for proper actions for \(G_r(\Sigma)\).
The authors explore finiteness conditions in Bredon cohomology for these groups. More precisely, a group, \(G\), is of type quasi-\(\underline{\text{FP}}_\infty\) if \(G\) is of type Bredon-\(\text{FP}_\infty\), the centralizers of its finite subgroups are finitely presented and for each subgroup \(Q\subset G\) there are only finitely many conjugacy classes of subgroups isomorphic to \(Q\). The authors prove the following Theorem. The group \(T_r(\Sigma)\) is of type quasi-\(\underline{\text{FP}}_\infty\) if and only if \(T_s(\Sigma)\) is of type \(\text{FP}_\infty\) for each \(1\leq s\leq d\) with \(\gcd(s,d)\mid r\).

MSC:

20J05 Homological methods in group theory
20F38 Other groups related to topology or analysis
57M07 Topological methods in group theory
20F65 Geometric group theory
20E32 Simple groups

References:

[1] R. Bieri, Homological dimension of discrete groups . 2nd ed., Queen Mary College Math- ematical Notes, Queen Mary College Department of Pure Mathematics, London 1981. · Zbl 0357.20027
[2] R. Bieri and B. Renz, Valuations on free resolutions and higher geometric invariants of groups. Comment. Math. Helv. 63 (1988), 464-497. · Zbl 0654.20029 · doi:10.1007/BF02566775
[3] C. Bleak, H. Bowman, A. Gordon, G. Graham, J. Hughes, F. Matucci, and E. Sapir, Centralizers in the R. Thompson group Vn. Groups Geom. Dyn. 7 (2013), 821-865. · Zbl 1298.20052 · doi:10.4171/GGD/207
[4] M. G. Brin, Higher dimensional Thompson groups. Geom. Dedicata 108 (2004), 163-192. · Zbl 1136.20025 · doi:10.1007/s10711-004-8122-9
[5] K. S. Brown, K. S. Brown, Finiteness properties of groups. J. Pure Appl. Algebra 44 (1987), 45-75. · Zbl 0613.20033 · doi:10.1016/0022-4049(87)90015-6
[6] J. Burillo and S. Cleary, Metric properties of higher-dimensional Thompson’s groups. Pacific J. Math. 248 (2010), 49-62. · Zbl 1236.20045 · doi:10.2140/pjm.2010.248.49
[7] P. M. Cohn, Universal algebra . Math. Appl. 6, 2nd ed., D. Reidel Publishing Co., Dord- recht 1981. · Zbl 0461.08001
[8] W. Dicks and C. Martínez-Pérez, Isomorphisms of Brin-Higman-Thompson groups. Israel J. Math. , to appear.
[9] J. Hennig and F. Matucci, Presentations for the higher-dimensional Thompson groups. Pacific J. Math. 257 (2012), 53-74. · Zbl 1248.20035 · doi:10.2140/pjm.2012.257.53
[10] G. Higman, Finitely presented infinite simple groups . Notes on Pure Mathematics 8, Australian National University, Canberra 1974.
[11] D. H. Kochloukova, C. Martínez-Pérez, and B. E. A. Nucinkis, Fixed points of finite groups acting on generalised Thompson groups. Israel J. Math. 187 (2012), 167-192. · Zbl 1272.20047 · doi:10.1007/s11856-011-0079-4
[12] D. H. Kochloukova, C. Martínez-Pérez, and B. E. A. Nucinkis, Cohomological finiteness properties of the Brin-Thompson-Higman groups 2V and 3V . Proc. Edinburgh Math. Soc. (2) 56 (2013), 777-804. · Zbl 1294.20065 · doi:10.1017/S0013091513000369
[13] P. H. Kropholler, C. Martinez-Pérez, and B. E. A. Nucinkis, Cohomological finiteness conditions for elementary amenable groups. J. Reine Angew. Math. 637 (2009), 49-62. · Zbl 1202.20055 · doi:10.1515/CRELLE.2009.090
[14] I. J. Leary and B. E. A. Nucinkis, Some groups of type VF . Invent. Math. 151 (2003), 135-165. · Zbl 1032.20035 · doi:10.1007/s00222-002-0254-7
[15] W. Lück, Transformation groups and algebraic K -theory. Lecture Notes in Math. 1408, Springer-Verlag, Berlin 1989. · Zbl 0679.57022 · doi:10.1007/BFb0083681
[16] W. Lück, The type of the classifying space for a family of subgroups. J. Pure Appl. Algebra 149 (2000), 177-203. · Zbl 0955.55009 · doi:10.1016/S0022-4049(98)90173-6
[17] W. Lück and D. Meintrup, On the universal space for group actions with compact isotropy. In Geometry and topology: Aarhus (1998), Contemp. Math. 258, Amer. Math. Soc., Providence, RI 2000, 293-305. · Zbl 0979.55010
[18] C. Martínez-Pérez, F. Matucci and B. E.A. Nucinkis, Cohomological finiteness conditions and centralisers in generalisations of Thompson’s group V. Preprint, · Zbl 1388.20070
[19] F. Matucci, Algorithms and classification in groups of piecewise-linear homeomorphisms. Ph.D. thesis, Cornell University, Ithaca 2008. Preprint,
[20] D. Meintrup and T. Schick, A model for the universal space for proper actions of a hyperbolic group. New York J. Math. 8 (2002), 1-7. · Zbl 0990.20027
[21] G. Mislin, Equivariant K-homology of the classifying space for proper actions . In Proper group actions and the Baum-Connes conjecture , Notes on an Advanced Course on Proper Group Actions, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel 2003, 1-78. · Zbl 1028.46001
[22] B. E. A. Nucinkis, On dimensions in Bredon homology. Homology Homotopy Appl. 6 (2004), 33-47. · Zbl 1068.20054 · doi:10.4310/HHA.2004.v6.n1.a4
[23] E. Pardo, The isomorphism problem for Higman-Thompson groups. J. Algebra 344 (2011), 172-183. · Zbl 1247.20034 · doi:10.1016/j.jalgebra.2011.07.026
[24] M. Stein, Groups of piecewise linear homeomorphisms. Trans. Amer. Math. Soc. 332 (1992), 477-514. · Zbl 0798.20025 · doi:10.2307/2154179
[25] K. Vogtmann, Automorphisms of free groups and outer space. Geom. Dedicata 94 (2002), 1-31. · Zbl 1017.20035 · doi:10.1023/A:1020973910646
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.