×

On the product decomposition conjecture for finite simple groups. (English) Zbl 1355.20013

The authors make some advance towards a conjecture of M. W. Liebeck et al. [Bull. Lond. Math. Soc. 44, No. 3, 469–472 (2012; Zbl 1250.20018)], which says that for any subset \(S\) of a simple group \(G\) with \(|S|>1\), \(G\) is a product of \(O( \log |G| / \log |S|)\) conjugates of \(S\). This is proved if \(G\) is of Lie type, with the constant in the \(O\) depending on its rank.
They also give an estimate for the rate of increase of product sets. Given a set \(S\), for some \(g\in G\) we have \(|SgS| \geq |S|^{1+\varepsilon}\) unless already \(S^3=G\), \(\varepsilon\) depending on the rank. For normal subsets, the dependence can be eliminated.

MSC:

20D06 Simple groups: alternating groups and groups of Lie type
20D40 Products of subgroups of abstract finite groups
20G40 Linear algebraic groups over finite fields

Citations:

Zbl 1250.20018

References:

[1] L. Babai, N. Nikolov, and L. Pyber, Product growth and mixing in finite groups. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms , ACM, New York 2008 248-257. · Zbl 1192.60016
[2] G. M. Bergman and H. W. Lenstra, Jr., Subgroups close to normal subgroups. J. Algebra 127 (1989), 80-97. · Zbl 0641.20023 · doi:10.1016/0021-8693(89)90275-5
[3] E. Breuillard, B. Green, and T. Tao, Approximate subgroups of linear groups. Geom. Funct. Anal. 21 (2011), 774-819. · Zbl 1229.20045 · doi:10.1007/s00039-011-0122-y
[4] W. T. Gowers, Quasirandom groups. Combin. Probab. Comput. 17 (2008), 363-387. · Zbl 1191.20016 · doi:10.1017/S0963548307008826
[5] R. M. Guralnick and W. M. Kantor, Probabilistic generation of finite simple groups. J. Algebra 234 (2000), 743-792. · Zbl 0973.20012 · doi:10.1006/jabr.2000.8357
[6] H. A. Helfgott, Growth and generation in SL2.Z=pZ/. Ann. of Math. (2) 167 (2008), 601-623. · Zbl 1213.20045 · doi:10.4007/annals.2008.167.601
[7] H. A. Helfgott, Growth in SL3.Z=pZ/. J. Eur. Math. Soc. ( JEMS) 13 (2011), 761-851. · Zbl 1235.20047 · doi:10.4171/JEMS/267
[8] M. Kassabov, A. Lubotzky, and N. Nikolov, Finite simple groups as expanders. Proc. Natl. Acad. Sci. USA 103 (2006), 6116-6119. · Zbl 1161.20010 · doi:10.1073/pnas.0510337103
[9] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups . Lon- don Math. Soc. Lecture Note Ser. 129, Cambridge University Press, Cambridge 1990. · Zbl 0697.20004
[10] V. Landazuri and G. M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups. J. Algebra 32 (1974), 418-443. · Zbl 0325.20008 · doi:10.1016/0021-8693(74)90150-1
[11] M. W. Liebeck, N. Nikolov, and A. Shalev, A conjecture on product decompositions in simple groups. Groups Geom. Dyn. 4 (2010), 799-812. · Zbl 1227.20006 · doi:10.4171/GGD/107
[12] M. W. Liebeck, N. Nikolov, and A. Shalev, Groups of Lie type as products of SL2 subgroups. J. Algebra 326 (2011), 201-207. · Zbl 1225.20016 · doi:10.1016/j.jalgebra.2008.12.030
[13] M. W. Liebeck, N. Nikolov, and A. Shalev, Product decompositions in finite simple groups. Bull. Lond. Math. Soc. 44 (2012), 469-472. · Zbl 1250.20018 · doi:10.1112/blms/bdr107
[14] M. W. Liebeck, C. E. Praeger, and J. Saxl, The maximal factorizations of the finite simple groups and their automorphism groups. Mem. Amer. Math. Soc. 86 (1990), no 432. · Zbl 0703.20021
[15] M. W. Liebeck and L. Pyber, Finite linear groups and bounded generation. Duke Math. J. 107 (2001), 159-171. · Zbl 1017.20039 · doi:10.1215/S0012-7094-01-10718-7
[16] M. W. Liebeck and A. Shalev, Diameters of finite simple groups: sharp bounds and applications. Ann. of Math. (2) 154 (2001), 383-406. · Zbl 1003.20014 · doi:10.2307/3062101
[17] A. Lubotzky, Finite simple groups of Lie type as expanders. J. Eur. Math. Soc. ( JEMS) 13 (2011), 1331-1341. · Zbl 1257.20016 · doi:10.4171/JEMS/282
[18] N. Nikolov, A product decomposition for the classical quasisimple groups. J. Group Theory 10 (2007), 43-53. · Zbl 1119.20025 · doi:10.1515/JGT.2007.005
[19] N. Nikolov and L. Pyber, Product decompositions of quasirandom groups and a Jor- dan type theorem. J. Eur. Math. Soc. ( JEMS) 13 (2011), 1063-1077. · Zbl 1228.20020 · doi:10.4171/JEMS/275
[20] G. Petridis, New proofs of Plünnecke-type estimates for product sets in groups. Combi- natorica 32 (2012), no. 6, 721-733. · Zbl 1291.11127 · doi:10.1007/s00493-012-2818-5
[21] H. Plünnecke, Eigenschaften und Abschätzungen von Wirkungsfunktionen . BMwF-GMD- 22, Gesellschaft für Mathematik und Datenverarbeitung, Bonn 1969. · Zbl 0199.36602
[22] H. Plünnecke, Eine zahlentheoretische Anwendung der Graphentheorie. J. Reine Angew. Math. 243 (1970), 171-183. · Zbl 0199.36701 · doi:10.1515/crll.1970.243.171
[23] L. Pyber and E. Szabó, Growth in finite simple groups of Lie type of bounded rank. Preprint,
[24] I. Z. Ruzsa, Sums of finite sets. In Number theory: New York Seminar 1991-1995 . Springer-Verlag, New York 1996, 281-293. · Zbl 0869.11011
[25] I. Z. Ruzsa, Sumsets and structure. In Combinatorial number theory and additive group theory , Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel 2009, 87-210. · Zbl 1221.11026
[26] I. Z. Ruzsa, Towards a noncommutative Plünnecke-type inequality. In An irregular mind , Bolyai Soc. Math. Stud. 21, János Bolyai Math. Soc., Budapest 2010, 591-605. · Zbl 1221.11027
[27] A. Shalev, Word maps, conjugacy classes, and a noncommutative Waring-type theorem. Ann. of Math. (2) 170 (2009), 1383-1416. · Zbl 1203.20013 · doi:10.4007/annals.2009.170.1383
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.